Spaces:
Sleeping
Sleeping
File size: 16,634 Bytes
9bf9e42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
# This file contains Transformer network
# Most of the code is copied from http://nlp.seas.harvard.edu/2018/04/03/attention.html
# The cfg name correspondance:
# N=num_layers
# d_model=input_encoding_size
# d_ff=rnn_size
# h is always 8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
from . import utils
import copy
import math
import numpy as np
from .CaptionModel import CaptionModel
from .AttModel import sort_pack_padded_sequence, pad_unsort_packed_sequence, pack_wrapper, AttModel
class EncoderDecoder(nn.Module):
"""
A standard Encoder-Decoder architecture. Base for this and many
other models.
"""
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
super(EncoderDecoder, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.generator = generator
def forward(self, src, tgt, src_mask, tgt_mask):
"Take in and process masked src and target sequences."
return self.decode(self.encode(src, src_mask), src_mask,
tgt, tgt_mask)
def encode(self, src, src_mask):
return self.encoder(self.src_embed(src), src_mask)
def decode(self, memory, src_mask, tgt, tgt_mask, past=None):
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask, past=past)
class Generator(nn.Module):
"Define standard linear + softmax generation step."
def __init__(self, d_model, vocab):
super(Generator, self).__init__()
self.proj = nn.Linear(d_model, vocab)
def forward(self, x):
return F.log_softmax(self.proj(x), dim=-1)
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Encoder(nn.Module):
"Core encoder is a stack of N layers"
def __init__(self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
"Pass the input (and mask) through each layer in turn."
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class LayerNorm(nn.Module):
"Construct a layernorm module (See citation for details)."
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
_x = sublayer(self.norm(x))
if type(_x) is tuple: # for multi-head attention that returns past
return x + self.dropout(_x[0]), _x[1]
return x + self.dropout(_x)
class EncoderLayer(nn.Module):
"Encoder is made up of self-attn and feed forward (defined below)"
def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size
def forward(self, x, mask):
"Follow Figure 1 (left) for connections."
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
return self.sublayer[1](x, self.feed_forward)
class Decoder(nn.Module):
"Generic N layer decoder with masking."
def __init__(self, layer, N):
super(Decoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, memory, src_mask, tgt_mask, past=None):
if past is not None:
present = [[], []]
x = x[:, -1:]
tgt_mask = tgt_mask[:, -1:] if tgt_mask is not None else None
past = list(zip(past[0].split(2, dim=0), past[1].split(2, dim=0)))
else:
past = [None] * len(self.layers)
for i, (layer, layer_past) in enumerate(zip(self.layers, past)):
x = layer(x, memory, src_mask, tgt_mask,
layer_past)
if layer_past is not None:
present[0].append(x[1][0])
present[1].append(x[1][1])
x = x[0]
if past[0] is None:
return self.norm(x)
else:
return self.norm(x), [torch.cat(present[0], 0), torch.cat(present[1], 0)]
class DecoderLayer(nn.Module):
"Decoder is made of self-attn, src-attn, and feed forward (defined below)"
def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
super(DecoderLayer, self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 3)
def forward(self, x, memory, src_mask, tgt_mask, layer_past=None):
"Follow Figure 1 (right) for connections."
m = memory
if layer_past is None:
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
return self.sublayer[2](x, self.feed_forward)
else:
present = [None, None]
x, present[0] = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask, layer_past[0]))
x, present[1] = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask, layer_past[1]))
return self.sublayer[2](x, self.feed_forward), present
def subsequent_mask(size):
"Mask out subsequent positions."
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0
def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) \
/ math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, float('-inf'))
p_attn = F.softmax(scores, dim = -1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None, layer_past=None):
"Implements Figure 2"
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1)
nbatches = query.size(0)
# The past works differently here. For self attn, the query and key be updated incrementailly
# For src_attn the past is fixed.
# For src_attn, when the layer past is ready
if layer_past is not None and layer_past.shape[2] == key.shape[1] > 1: # suppose memory size always greater than 1
query = self.linears[0](query)
key, value = layer_past[0], layer_past[1]
present = torch.stack([key, value])
else:
# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = \
[l(x) for l, x in zip(self.linears, (query, key, value))]
# self attn + past OR the first time step of src attn
if layer_past is not None and not (layer_past.shape[2] == key.shape[1] > 1):
past_key, past_value = layer_past[0], layer_past[1]
key = torch.cat((past_key, key), dim=1)
value = torch.cat((past_value, value), dim=1)
present = torch.stack([key, value])
query, key, value = \
[x.view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for x in [query, key, value]]
# 2) Apply attention on all the projected vectors in batch.
x, self.attn = attention(query, key, value, mask=mask,
dropout=self.dropout)
# 3) "Concat" using a view and apply a final linear.
x = x.transpose(1, 2).contiguous() \
.view(nbatches, -1, self.h * self.d_k)
if layer_past is not None:
return self.linears[-1](x), present
else:
return self.linears[-1](x)
class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
class PositionalEncoding(nn.Module):
"Implement the PE function."
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1).float()
div_term = torch.exp(torch.arange(0, d_model, 2).float() *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
return self.dropout(x)
class TransformerModel(AttModel):
def make_model(self, src_vocab, tgt_vocab, N_enc=6, N_dec=6,
d_model=512, d_ff=2048, h=8, dropout=0.1):
"Helper: Construct a model from hyperparameters."
c = copy.deepcopy
attn = MultiHeadedAttention(h, d_model, dropout)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
position = PositionalEncoding(d_model, dropout)
model = EncoderDecoder(
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N_enc),
Decoder(DecoderLayer(d_model, c(attn), c(attn),
c(ff), dropout), N_dec),
lambda x:x, # nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
Generator(d_model, tgt_vocab))
# This was important from their code.
# Initialize parameters with Glorot / fan_avg.
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model
def __init__(self, opt):
super(TransformerModel, self).__init__(opt)
self.opt = opt
# self.config = yaml.load(open(opt.config_file))
self.N_enc = getattr(opt, 'N_enc', opt.num_layers)
self.N_dec = getattr(opt, 'N_dec', opt.num_layers)
self.d_model = getattr(opt, 'd_model', opt.input_encoding_size)
self.d_ff = getattr(opt, 'd_ff', opt.rnn_size)
self.h = getattr(opt, 'num_att_heads', 8)
self.dropout = getattr(opt, 'dropout', 0.1)
delattr(self, 'att_embed')
self.att_embed = nn.Sequential(*(
((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+
(nn.Linear(self.att_feat_size, self.d_model),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm))+
((nn.BatchNorm1d(self.d_model),) if self.use_bn==2 else ())))
delattr(self, 'embed')
self.embed = lambda x : x
delattr(self, 'fc_embed')
self.fc_embed = lambda x : x
delattr(self, 'logit')
del self.ctx2att
tgt_vocab = self.vocab_size + 1
self.model = self.make_model(0, tgt_vocab,
N_enc=self.N_enc,
N_dec=self.N_dec,
d_model=self.d_model,
d_ff=self.d_ff,
h=self.h,
dropout=self.dropout)
def logit(self, x): # unsafe way
return self.model.generator.proj(x)
def init_hidden(self, bsz):
return []
def _prepare_feature(self, fc_feats, att_feats, att_masks):
att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks)
memory = self.model.encode(att_feats, att_masks)
return fc_feats[...,:0], att_feats[...,:0], memory, att_masks
def _prepare_feature_forward(self, att_feats, att_masks=None, seq=None):
att_feats, att_masks = self.clip_att(att_feats, att_masks)
att_feats = pack_wrapper(self.att_embed, att_feats, att_masks)
if att_masks is None:
att_masks = att_feats.new_ones(att_feats.shape[:2], dtype=torch.long)
att_masks = att_masks.unsqueeze(-2)
if seq is not None:
# crop the last one
# seq = seq[:,:-1]
seq_mask = (seq.data != self.eos_idx) & (seq.data != self.pad_idx)
seq_mask[:,0] = 1 # bos
seq_mask = seq_mask.unsqueeze(-2)
seq_mask = seq_mask & subsequent_mask(seq.size(-1)).to(seq_mask)
seq_per_img = seq.shape[0] // att_feats.shape[0]
if seq_per_img > 1:
att_feats, att_masks = utils.repeat_tensors(seq_per_img,
[att_feats, att_masks]
)
else:
seq_mask = None
return att_feats, seq, att_masks, seq_mask
def _forward(self, fc_feats, att_feats, seq, att_masks=None):
if seq.ndim == 3: # B * seq_per_img * seq_len
seq = seq.reshape(-1, seq.shape[2])
att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks, seq)
out = self.model(att_feats, seq, att_masks, seq_mask)
outputs = self.model.generator(out)
return outputs
# return torch.cat([_.unsqueeze(1) for _ in outputs], 1)
def core(self, it, fc_feats_ph, att_feats_ph, memory, state, mask):
"""
state is the precomputed key/value. N_dec x seq_len x d_model
Note: due to the layer norm, it's not equivalant to stateless,
but it seems behaving similar
"""
# state is tokens + past
if len(state) == 0:
ys = it.unsqueeze(1)
# basically empty state, just to let it know to return past
# The second dim has to be batch_size, for beam search purpose
past = [fc_feats_ph.new_zeros(self.N_dec * 2, fc_feats_ph.shape[0], 0, self.d_model), # self
fc_feats_ph.new_zeros(self.N_dec * 2, fc_feats_ph.shape[0], 0, self.d_model)] # src
# 2 for self attn, 2 for src attn
else:
ys = torch.cat([state[0][0], it.unsqueeze(1)], dim=1)
past = state[1:]
out, past = self.model.decode(memory, mask,
ys, # We still feed the full past words, because we need it for position embedding to know the position id
subsequent_mask(ys.size(1))
.to(memory.device),
past=past)
return out[:, -1], [ys.unsqueeze(0)] + past
|