Spaces:
Sleeping
Sleeping
File size: 8,577 Bytes
9bf9e42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import torch
import torch.nn as nn
import numpy as np
import torch.optim as optim
import os
import torch.nn.functional as F
import six
from six.moves import cPickle
bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am']
bad_endings += ['UNK', 'has', 'and', 'more']
def pickle_load(f):
""" Load a pickle.
Parameters
----------
f: file-like object
"""
if six.PY3:
return cPickle.load(f, encoding='latin-1')
else:
return cPickle.load(f)
def pickle_dump(obj, f):
""" Dump a pickle.
Parameters
----------
obj: pickled object
f: file-like object
"""
if six.PY3:
return cPickle.dump(obj, f, protocol=2)
else:
return cPickle.dump(obj, f)
# modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/comm.py
def serialize_to_tensor(data):
device = torch.device("cpu")
buffer = cPickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to(device=device)
return tensor
def deserialize(tensor):
buffer = tensor.cpu().numpy().tobytes()
return cPickle.loads(buffer)
# Input: seq, N*D numpy array, with element 0 .. vocab_size. 0 is END token.
def decode_sequence(ix_to_word, seq):
N, D = seq.size()
out = []
for i in range(N):
txt = ''
for j in range(D):
ix = seq[i,j]
if ix > 0 :
if j >= 1:
txt = txt + ' '
txt = txt + ix_to_word[str(ix.item())]
else:
break
if int(os.getenv('REMOVE_BAD_ENDINGS', '0')):
flag = 0
words = txt.split(' ')
for j in range(len(words)):
if words[-j-1] not in bad_endings:
flag = -j
break
txt = ' '.join(words[0:len(words)+flag])
out.append(txt.replace('@@ ', ''))
return out
def save_checkpoint(opt, model, infos, optimizer, histories=None, append=''):
if len(append) > 0:
append = '_' + append
# if checkpoint_path doesn't exist
if not os.path.isdir(opt.checkpoint_path):
os.makedirs(opt.checkpoint_path)
checkpoint_path = os.path.join(opt.checkpoint_path, 'model%s.pth' %(append))
torch.save(model.state_dict(), checkpoint_path)
print("model saved to {}".format(checkpoint_path))
optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer%s.pth' %(append))
torch.save(optimizer.state_dict(), optimizer_path)
with open(os.path.join(opt.checkpoint_path, 'infos%s.pkl' %(append)), 'wb') as f:
pickle_dump(infos, f)
if histories:
with open(os.path.join(opt.checkpoint_path, 'histories%s.pkl' %(append)), 'wb') as f:
pickle_dump(histories, f)
def set_lr(optimizer, lr):
for group in optimizer.param_groups:
group['lr'] = lr
def get_lr(optimizer):
for group in optimizer.param_groups:
return group['lr']
def build_optimizer(params, opt):
if opt.optim == 'rmsprop':
return optim.RMSprop(params, opt.learning_rate, opt.optim_alpha, opt.optim_epsilon, weight_decay=opt.weight_decay)
elif opt.optim == 'adagrad':
return optim.Adagrad(params, opt.learning_rate, weight_decay=opt.weight_decay)
elif opt.optim == 'sgd':
return optim.SGD(params, opt.learning_rate, weight_decay=opt.weight_decay)
elif opt.optim == 'sgdm':
return optim.SGD(params, opt.learning_rate, opt.optim_alpha, weight_decay=opt.weight_decay)
elif opt.optim == 'sgdmom':
return optim.SGD(params, opt.learning_rate, opt.optim_alpha, weight_decay=opt.weight_decay, nesterov=True)
elif opt.optim == 'adam':
return optim.Adam(params, opt.learning_rate, (opt.optim_alpha, opt.optim_beta), opt.optim_epsilon, weight_decay=opt.weight_decay)
elif opt.optim == 'adamw':
return optim.AdamW(params, opt.learning_rate, (opt.optim_alpha, opt.optim_beta), opt.optim_epsilon, weight_decay=opt.weight_decay)
else:
raise Exception("bad option opt.optim: {}".format(opt.optim))
def penalty_builder(penalty_config):
if penalty_config == '':
return lambda x,y: y
pen_type, alpha = penalty_config.split('_')
alpha = float(alpha)
if pen_type == 'wu':
return lambda x,y: length_wu(x,y,alpha)
if pen_type == 'avg':
return lambda x,y: length_average(x,y,alpha)
def length_wu(length, logprobs, alpha=0.):
"""
NMT length re-ranking score from
"Google's Neural Machine Translation System" :cite:`wu2016google`.
"""
modifier = (((5 + length) ** alpha) /
((5 + 1) ** alpha))
return (logprobs / modifier)
def length_average(length, logprobs, alpha=0.):
"""
Returns the average probability of tokens in a sequence.
"""
return logprobs / length
class NoamOpt(object):
"Optim wrapper that implements rate."
def __init__(self, model_size, factor, warmup, optimizer):
self.optimizer = optimizer
self._step = 0
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0
def step(self):
"Update parameters and rate"
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:
p['lr'] = rate
self._rate = rate
self.optimizer.step()
def rate(self, step = None):
"Implement `lrate` above"
if step is None:
step = self._step
return self.factor * \
(self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))
def __getattr__(self, name):
return getattr(self.optimizer, name)
def state_dict(self):
state_dict = self.optimizer.state_dict()
state_dict['_step'] = self._step
return state_dict
def load_state_dict(self, state_dict):
if '_step' in state_dict:
self._step = state_dict['_step']
del state_dict['_step']
self.optimizer.load_state_dict(state_dict)
class ReduceLROnPlateau(object):
"Optim wrapper that implements rate."
def __init__(self, optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08):
self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode, factor, patience, verbose, threshold, threshold_mode, cooldown, min_lr, eps)
self.optimizer = optimizer
self.current_lr = get_lr(optimizer)
def step(self):
"Update parameters and rate"
self.optimizer.step()
def scheduler_step(self, val):
self.scheduler.step(val)
self.current_lr = get_lr(self.optimizer)
def state_dict(self):
return {'current_lr':self.current_lr,
'scheduler_state_dict': self.scheduler.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict()}
def load_state_dict(self, state_dict):
if 'current_lr' not in state_dict:
# it's normal optimizer
self.optimizer.load_state_dict(state_dict)
set_lr(self.optimizer, self.current_lr) # use the lr fromt the option
else:
# it's a schduler
self.current_lr = state_dict['current_lr']
self.scheduler.load_state_dict(state_dict['scheduler_state_dict'])
self.optimizer.load_state_dict(state_dict['optimizer_state_dict'])
# current_lr is actually useless in this case
def rate(self, step = None):
"Implement `lrate` above"
if step is None:
step = self._step
return self.factor * \
(self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))
def __getattr__(self, name):
return getattr(self.optimizer, name)
def get_std_opt(model, optim_func='adam', factor=1, warmup=2000):
# return NoamOpt(model.tgt_embed[0].d_model, 2, 4000,
# torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
optim_func = dict(adam=torch.optim.Adam,
adamw=torch.optim.AdamW)[optim_func]
return NoamOpt(model.d_model, factor, warmup,
optim_func(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) |