File size: 8,577 Bytes
9bf9e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import torch
import torch.nn as nn
import numpy as np
import torch.optim as optim
import os

import torch.nn.functional as F

import six
from six.moves import cPickle

bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am']
bad_endings += ['UNK', 'has', 'and', 'more']

def pickle_load(f):
    """ Load a pickle.
    Parameters
    ----------
    f: file-like object
    """
    if six.PY3:
        return cPickle.load(f, encoding='latin-1')
    else:
        return cPickle.load(f)


def pickle_dump(obj, f):
    """ Dump a pickle.
    Parameters
    ----------
    obj: pickled object
    f: file-like object
    """
    if six.PY3:
        return cPickle.dump(obj, f, protocol=2)
    else:
        return cPickle.dump(obj, f)


# modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/comm.py
def serialize_to_tensor(data):
    device = torch.device("cpu")

    buffer = cPickle.dumps(data)
    storage = torch.ByteStorage.from_buffer(buffer)
    tensor = torch.ByteTensor(storage).to(device=device)
    return tensor


def deserialize(tensor):
    buffer = tensor.cpu().numpy().tobytes()
    return cPickle.loads(buffer)


# Input: seq, N*D numpy array, with element 0 .. vocab_size. 0 is END token.
def decode_sequence(ix_to_word, seq):
    N, D = seq.size()
    out = []
    for i in range(N):
        txt = ''
        for j in range(D):
            ix = seq[i,j]
            if ix > 0 :
                if j >= 1:
                    txt = txt + ' '
                txt = txt + ix_to_word[str(ix.item())]
            else:
                break
        if int(os.getenv('REMOVE_BAD_ENDINGS', '0')):
            flag = 0
            words = txt.split(' ')
            for j in range(len(words)):
                if words[-j-1] not in bad_endings:
                    flag = -j
                    break
            txt = ' '.join(words[0:len(words)+flag])
        out.append(txt.replace('@@ ', ''))
    return out


def save_checkpoint(opt, model, infos, optimizer, histories=None, append=''):
    if len(append) > 0:
        append = '_' + append
    # if checkpoint_path doesn't exist
    if not os.path.isdir(opt.checkpoint_path):
        os.makedirs(opt.checkpoint_path)
    checkpoint_path = os.path.join(opt.checkpoint_path, 'model%s.pth' %(append))
    torch.save(model.state_dict(), checkpoint_path)
    print("model saved to {}".format(checkpoint_path))
    optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer%s.pth' %(append))
    torch.save(optimizer.state_dict(), optimizer_path)
    with open(os.path.join(opt.checkpoint_path, 'infos%s.pkl' %(append)), 'wb') as f:
        pickle_dump(infos, f)
    if histories:
        with open(os.path.join(opt.checkpoint_path, 'histories%s.pkl' %(append)), 'wb') as f:
            pickle_dump(histories, f)


def set_lr(optimizer, lr):
    for group in optimizer.param_groups:
        group['lr'] = lr

def get_lr(optimizer):
    for group in optimizer.param_groups:
        return group['lr']


def build_optimizer(params, opt):
    if opt.optim == 'rmsprop':
        return optim.RMSprop(params, opt.learning_rate, opt.optim_alpha, opt.optim_epsilon, weight_decay=opt.weight_decay)
    elif opt.optim == 'adagrad':
        return optim.Adagrad(params, opt.learning_rate, weight_decay=opt.weight_decay)
    elif opt.optim == 'sgd':
        return optim.SGD(params, opt.learning_rate, weight_decay=opt.weight_decay)
    elif opt.optim == 'sgdm':
        return optim.SGD(params, opt.learning_rate, opt.optim_alpha, weight_decay=opt.weight_decay)
    elif opt.optim == 'sgdmom':
        return optim.SGD(params, opt.learning_rate, opt.optim_alpha, weight_decay=opt.weight_decay, nesterov=True)
    elif opt.optim == 'adam':
        return optim.Adam(params, opt.learning_rate, (opt.optim_alpha, opt.optim_beta), opt.optim_epsilon, weight_decay=opt.weight_decay)
    elif opt.optim == 'adamw':
        return optim.AdamW(params, opt.learning_rate, (opt.optim_alpha, opt.optim_beta), opt.optim_epsilon, weight_decay=opt.weight_decay)
    else:
        raise Exception("bad option opt.optim: {}".format(opt.optim))
    

def penalty_builder(penalty_config):
    if penalty_config == '':
        return lambda x,y: y
    pen_type, alpha = penalty_config.split('_')
    alpha = float(alpha)
    if pen_type == 'wu':
        return lambda x,y: length_wu(x,y,alpha)
    if pen_type == 'avg':
        return lambda x,y: length_average(x,y,alpha)

def length_wu(length, logprobs, alpha=0.):
    """
    NMT length re-ranking score from
    "Google's Neural Machine Translation System" :cite:`wu2016google`.
    """

    modifier = (((5 + length) ** alpha) /
                ((5 + 1) ** alpha))
    return (logprobs / modifier)

def length_average(length, logprobs, alpha=0.):
    """
    Returns the average probability of tokens in a sequence.
    """
    return logprobs / length


class NoamOpt(object):
    "Optim wrapper that implements rate."
    def __init__(self, model_size, factor, warmup, optimizer):
        self.optimizer = optimizer
        self._step = 0
        self.warmup = warmup
        self.factor = factor
        self.model_size = model_size
        self._rate = 0
        
    def step(self):
        "Update parameters and rate"
        self._step += 1
        rate = self.rate()
        for p in self.optimizer.param_groups:
            p['lr'] = rate
        self._rate = rate
        self.optimizer.step()
        
    def rate(self, step = None):
        "Implement `lrate` above"
        if step is None:
            step = self._step
        return self.factor * \
            (self.model_size ** (-0.5) *
            min(step ** (-0.5), step * self.warmup ** (-1.5)))

    def __getattr__(self, name):
        return getattr(self.optimizer, name)

    def state_dict(self):
        state_dict = self.optimizer.state_dict()
        state_dict['_step'] = self._step
        return state_dict

    def load_state_dict(self, state_dict):
        if '_step' in state_dict:
            self._step = state_dict['_step']
            del state_dict['_step']
        self.optimizer.load_state_dict(state_dict)

class ReduceLROnPlateau(object):
    "Optim wrapper that implements rate."
    def __init__(self, optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08):
        self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode, factor, patience, verbose, threshold, threshold_mode, cooldown, min_lr, eps)
        self.optimizer = optimizer
        self.current_lr = get_lr(optimizer)
        
    def step(self):
        "Update parameters and rate"
        self.optimizer.step()

    def scheduler_step(self, val):
        self.scheduler.step(val)
        self.current_lr = get_lr(self.optimizer)

    def state_dict(self):
        return {'current_lr':self.current_lr,
                'scheduler_state_dict': self.scheduler.state_dict(),
                'optimizer_state_dict': self.optimizer.state_dict()}

    def load_state_dict(self, state_dict):
        if 'current_lr' not in state_dict:
            # it's normal optimizer
            self.optimizer.load_state_dict(state_dict)
            set_lr(self.optimizer, self.current_lr) # use the lr fromt the option
        else:
            # it's a schduler
            self.current_lr = state_dict['current_lr']
            self.scheduler.load_state_dict(state_dict['scheduler_state_dict'])
            self.optimizer.load_state_dict(state_dict['optimizer_state_dict'])
            # current_lr is actually useless in this case
    
    def rate(self, step = None):
        "Implement `lrate` above"
        if step is None:
            step = self._step
        return self.factor * \
            (self.model_size ** (-0.5) *
            min(step ** (-0.5), step * self.warmup ** (-1.5)))

    def __getattr__(self, name):
        return getattr(self.optimizer, name)
        
def get_std_opt(model, optim_func='adam', factor=1, warmup=2000):
    # return NoamOpt(model.tgt_embed[0].d_model, 2, 4000,
    #         torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
    optim_func = dict(adam=torch.optim.Adam,
                      adamw=torch.optim.AdamW)[optim_func]
    return NoamOpt(model.d_model, factor, warmup,
            optim_func(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))