Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torchvision.models.resnet | |
from torchvision.models.resnet import BasicBlock, Bottleneck | |
import torch.utils.model_zoo as model_zoo | |
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', | |
'resnet152'] | |
model_urls = { | |
'resnet18': 'https://download.pytorch.org/models/resnet18-f37072fd.pth', | |
'resnet34': 'https://download.pytorch.org/models/resnet34-b627a593.pth', | |
'resnet50': 'https://download.pytorch.org/models/resnet50-11ad3fa6.pth', | |
'resnet101': 'https://download.pytorch.org/models/resnet101-cd907fc2.pth', | |
'resnet152': 'https://download.pytorch.org/models/resnet152-f82ba261.pth', | |
} | |
class ResNet(torchvision.models.resnet.ResNet): | |
def __init__(self, block, layers, num_classes=1000): | |
super(ResNet, self).__init__(block, layers, num_classes) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True) # change | |
for i in range(2, 5): | |
getattr(self, 'layer%d'%i)[0].conv1.stride = (2,2) | |
getattr(self, 'layer%d'%i)[0].conv2.stride = (1,1) | |
def resnet18(pretrained=False): | |
"""Constructs a ResNet-18 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(BasicBlock, [2, 2, 2, 2]) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) | |
return model | |
def resnet34(pretrained=False): | |
"""Constructs a ResNet-34 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(BasicBlock, [3, 4, 6, 3]) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) | |
return model | |
def resnet50(pretrained=False): | |
"""Constructs a ResNet-50 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 4, 6, 3]) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) | |
return model | |
def resnet101(pretrained=False): | |
"""Constructs a ResNet-101 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 4, 23, 3]) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) | |
return model | |
def resnet152(pretrained=False): | |
"""Constructs a ResNet-152 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 8, 36, 3]) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) | |
return model |