Spaces:
Sleeping
Sleeping
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import * | |
from . import utils | |
from .CaptionModel import CaptionModel | |
class LSTMCore(nn.Module): | |
def __init__(self, opt): | |
super(LSTMCore, self).__init__() | |
self.input_encoding_size = opt.input_encoding_size | |
self.rnn_size = opt.rnn_size | |
self.drop_prob_lm = opt.drop_prob_lm | |
# Build a LSTM | |
self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) | |
self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) | |
self.dropout = nn.Dropout(self.drop_prob_lm) | |
def forward(self, xt, state): | |
all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) | |
sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) | |
sigmoid_chunk = torch.sigmoid(sigmoid_chunk) | |
in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) | |
forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) | |
out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) | |
in_transform = torch.max(\ | |
all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size), | |
all_input_sums.narrow(1, 4 * self.rnn_size, self.rnn_size)) | |
next_c = forget_gate * state[1][-1] + in_gate * in_transform | |
next_h = out_gate * torch.tanh(next_c) | |
output = self.dropout(next_h) | |
state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) | |
return output, state | |
class FCModel(CaptionModel): | |
def __init__(self, opt): | |
super(FCModel, self).__init__() | |
self.vocab_size = opt.vocab_size | |
self.input_encoding_size = opt.input_encoding_size | |
self.rnn_type = opt.rnn_type | |
self.rnn_size = opt.rnn_size | |
self.num_layers = opt.num_layers | |
self.drop_prob_lm = opt.drop_prob_lm | |
self.seq_length = opt.seq_length | |
self.fc_feat_size = opt.fc_feat_size | |
self.ss_prob = 0.0 # Schedule sampling probability | |
self.img_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) | |
self.core = LSTMCore(opt) | |
self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) | |
self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) | |
self.init_weights() | |
def init_weights(self): | |
initrange = 0.1 | |
self.embed.weight.data.uniform_(-initrange, initrange) | |
self.logit.bias.data.fill_(0) | |
self.logit.weight.data.uniform_(-initrange, initrange) | |
def init_hidden(self, bsz): | |
weight = self.logit.weight | |
if self.rnn_type == 'lstm': | |
return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), | |
weight.new_zeros(self.num_layers, bsz, self.rnn_size)) | |
else: | |
return weight.new_zeros(self.num_layers, bsz, self.rnn_size) | |
def _forward(self, fc_feats, att_feats, seq, att_masks=None): | |
batch_size = fc_feats.size(0) | |
seq_per_img = seq.shape[0] // batch_size | |
state = self.init_hidden(batch_size*seq_per_img) | |
outputs = [] | |
if seq_per_img > 1: | |
fc_feats = utils.repeat_tensors(seq_per_img, fc_feats) | |
for i in range(seq.size(1) + 1): | |
if i == 0: | |
xt = self.img_embed(fc_feats) | |
else: | |
if self.training and i >= 2 and self.ss_prob > 0.0: # otherwiste no need to sample | |
sample_prob = fc_feats.data.new(batch_size*seq_per_img).uniform_(0, 1) | |
sample_mask = sample_prob < self.ss_prob | |
if sample_mask.sum() == 0: | |
it = seq[:, i-1].clone() | |
else: | |
sample_ind = sample_mask.nonzero().view(-1) | |
it = seq[:, i-1].data.clone() | |
#prob_prev = torch.exp(outputs[-1].data.index_select(0, sample_ind)) # fetch prev distribution: shape Nx(M+1) | |
#it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1)) | |
prob_prev = torch.exp(outputs[-1].data) # fetch prev distribution: shape Nx(M+1) | |
it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) | |
else: | |
it = seq[:, i-1].clone() | |
# break if all the sequences end | |
if i >= 2 and seq[:, i-1].sum() == 0: | |
break | |
xt = self.embed(it) | |
output, state = self.core(xt, state) | |
output = F.log_softmax(self.logit(output), dim=1) | |
outputs.append(output) | |
return torch.cat([_.unsqueeze(1) for _ in outputs[1:]], 1).contiguous() | |
def get_logprobs_state(self, it, state): | |
# 'it' is contains a word index | |
xt = self.embed(it) | |
output, state = self.core(xt, state) | |
logprobs = F.log_softmax(self.logit(output), dim=1) | |
return logprobs, state | |
def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): | |
beam_size = opt.get('beam_size', 10) | |
batch_size = fc_feats.size(0) | |
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' | |
seq = torch.LongTensor(self.seq_length, batch_size).zero_() | |
seqLogprobs = torch.FloatTensor(self.seq_length, batch_size, self.vocab_size + 1) | |
# lets process every image independently for now, for simplicity | |
self.done_beams = [[] for _ in range(batch_size)] | |
for k in range(batch_size): | |
state = self.init_hidden(beam_size) | |
for t in range(2): | |
if t == 0: | |
xt = self.img_embed(fc_feats[k:k+1]).expand(beam_size, self.input_encoding_size) | |
elif t == 1: # input <bos> | |
it = fc_feats.data.new(beam_size).long().zero_() | |
xt = self.embed(it) | |
output, state = self.core(xt, state) | |
logprobs = F.log_softmax(self.logit(output), dim=1) | |
self.done_beams[k] = self.beam_search(state, logprobs, opt=opt) | |
seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score | |
seqLogprobs[:, k] = self.done_beams[k][0]['logps'] | |
# return the samples and their log likelihoods | |
return seq.transpose(0, 1), seqLogprobs.transpose(0, 1) | |
def _sample(self, fc_feats, att_feats, att_masks=None, opt={}): | |
sample_method = opt.get('sample_method', 'greedy') | |
beam_size = opt.get('beam_size', 1) | |
temperature = opt.get('temperature', 1.0) | |
if beam_size > 1 and sample_method in ['greedy', 'beam_search']: | |
return self._sample_beam(fc_feats, att_feats, opt) | |
batch_size = fc_feats.size(0) | |
state = self.init_hidden(batch_size) | |
seq = fc_feats.new_zeros(batch_size, self.seq_length, dtype=torch.long) | |
seqLogprobs = fc_feats.new_zeros(batch_size, self.seq_length, self.vocab_size + 1) | |
for t in range(self.seq_length + 2): | |
if t == 0: | |
xt = self.img_embed(fc_feats) | |
else: | |
if t == 1: # input <bos> | |
it = fc_feats.data.new(batch_size).long().zero_() | |
xt = self.embed(it) | |
output, state = self.core(xt, state) | |
logprobs = F.log_softmax(self.logit(output), dim=1) | |
# sample the next_word | |
if t == self.seq_length + 1: # skip if we achieve maximum length | |
break | |
if sample_method == 'greedy': | |
sampleLogprobs, it = torch.max(logprobs.data, 1) | |
it = it.view(-1).long() | |
else: | |
if temperature == 1.0: | |
prob_prev = torch.exp(logprobs.data).cpu() # fetch prev distribution: shape Nx(M+1) | |
else: | |
# scale logprobs by temperature | |
prob_prev = torch.exp(torch.div(logprobs.data, temperature)).cpu() | |
it = torch.multinomial(prob_prev, 1).to(logprobs.device) | |
sampleLogprobs = logprobs.gather(1, it) # gather the logprobs at sampled positions | |
it = it.view(-1).long() # and flatten indices for downstream processing | |
if t >= 1: | |
# stop when all finished | |
if t == 1: | |
unfinished = it > 0 | |
else: | |
unfinished = unfinished & (it > 0) | |
it = it * unfinished.type_as(it) | |
seq[:,t-1] = it #seq[t] the input of t+2 time step | |
seqLogprobs[:,t-1] = sampleLogprobs.view(-1) | |
if unfinished.sum() == 0: | |
break | |
return seq, seqLogprobs | |