yashonwu
add captioning
9bf9e42
raw
history blame
4.61 kB
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import time
from collections import OrderedDict
import torch
import sys
try:
sys.path.append("cider")
from pyciderevalcap.ciderD.ciderD import CiderD
from pyciderevalcap.cider.cider import Cider
sys.path.append("coco-caption")
from pycocoevalcap.bleu.bleu import Bleu
except:
print('cider or coco-caption missing')
CiderD_scorer = None
Cider_scorer = None
Bleu_scorer = None
#CiderD_scorer = CiderD(df='corpus')
def init_scorer(cached_tokens):
global CiderD_scorer
CiderD_scorer = CiderD_scorer or CiderD(df=cached_tokens)
global Cider_scorer
Cider_scorer = Cider_scorer or Cider(df=cached_tokens)
global Bleu_scorer
Bleu_scorer = Bleu_scorer or Bleu(4)
def array_to_str(arr):
out = ''
for i in range(len(arr)):
out += str(arr[i]) + ' '
if arr[i] == 0:
break
return out.strip()
def get_self_critical_reward(greedy_res, data_gts, gen_result, opt):
batch_size = len(data_gts)
gen_result_size = gen_result.shape[0]
seq_per_img = gen_result_size // len(data_gts) # gen_result_size = batch_size * seq_per_img
assert greedy_res.shape[0] == batch_size
res = OrderedDict()
gen_result = gen_result.data.cpu().numpy()
greedy_res = greedy_res.data.cpu().numpy()
for i in range(gen_result_size):
res[i] = [array_to_str(gen_result[i])]
for i in range(batch_size):
res[gen_result_size + i] = [array_to_str(greedy_res[i])]
gts = OrderedDict()
for i in range(len(data_gts)):
gts[i] = [array_to_str(data_gts[i][j]) for j in range(len(data_gts[i]))]
res_ = [{'image_id':i, 'caption': res[i]} for i in range(len(res))]
res__ = {i: res[i] for i in range(len(res_))}
gts_ = {i: gts[i // seq_per_img] for i in range(gen_result_size)}
gts_.update({i+gen_result_size: gts[i] for i in range(batch_size)})
if opt.cider_reward_weight > 0:
_, cider_scores = CiderD_scorer.compute_score(gts_, res_)
print('Cider scores:', _)
else:
cider_scores = 0
if opt.bleu_reward_weight > 0:
_, bleu_scores = Bleu_scorer.compute_score(gts_, res__)
bleu_scores = np.array(bleu_scores[3])
print('Bleu scores:', _[3])
else:
bleu_scores = 0
scores = opt.cider_reward_weight * cider_scores + opt.bleu_reward_weight * bleu_scores
scores = scores[:gen_result_size].reshape(batch_size, seq_per_img) - scores[-batch_size:][:, np.newaxis]
scores = scores.reshape(gen_result_size)
rewards = np.repeat(scores[:, np.newaxis], gen_result.shape[1], 1)
return rewards
def get_scores(data_gts, gen_result, opt):
batch_size = gen_result.size(0)# batch_size = sample_size * seq_per_img
seq_per_img = batch_size // len(data_gts)
res = OrderedDict()
gen_result = gen_result.data.cpu().numpy()
for i in range(batch_size):
res[i] = [array_to_str(gen_result[i])]
gts = OrderedDict()
for i in range(len(data_gts)):
gts[i] = [array_to_str(data_gts[i][j]) for j in range(len(data_gts[i]))]
res_ = [{'image_id':i, 'caption': res[i]} for i in range(batch_size)]
res__ = {i: res[i] for i in range(batch_size)}
gts = {i: gts[i // seq_per_img] for i in range(batch_size)}
if opt.cider_reward_weight > 0:
_, cider_scores = CiderD_scorer.compute_score(gts, res_)
print('Cider scores:', _)
else:
cider_scores = 0
if opt.bleu_reward_weight > 0:
_, bleu_scores = Bleu_scorer.compute_score(gts, res__)
bleu_scores = np.array(bleu_scores[3])
print('Bleu scores:', _[3])
else:
bleu_scores = 0
scores = opt.cider_reward_weight * cider_scores + opt.bleu_reward_weight * bleu_scores
return scores
def get_self_cider_scores(data_gts, gen_result, opt):
batch_size = gen_result.size(0)# batch_size = sample_size * seq_per_img
seq_per_img = batch_size // len(data_gts)
res = []
gen_result = gen_result.data.cpu().numpy()
for i in range(batch_size):
res.append(array_to_str(gen_result[i]))
scores = []
for i in range(len(data_gts)):
tmp = Cider_scorer.my_self_cider([res[i*seq_per_img:(i+1)*seq_per_img]])
def get_div(eigvals):
eigvals = np.clip(eigvals, 0, None)
return -np.log(np.sqrt(eigvals[-1]) / (np.sqrt(eigvals).sum())) / np.log(len(eigvals))
scores.append(get_div(np.linalg.eigvalsh(tmp[0]/10)))
scores = np.array(scores)
return scores