mmir_usersim / captioning /data /dataloader.py
yashonwu
add captioning
9bf9e42
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import h5py
from lmdbdict import lmdbdict
from lmdbdict.methods import DUMPS_FUNC, LOADS_FUNC
import os
import numpy as np
import numpy.random as npr
import random
from functools import partial
import torch
import torch.utils.data as data
import multiprocessing
import six
class HybridLoader:
"""
If db_path is a director, then use normal file loading
If lmdb, then load from lmdb
The loading method depend on extention.
in_memory: if in_memory is True, we save all the features in memory
For individual np(y|z)s, we don't need to do that because the system will do this for us.
Should be useful for lmdb or h5.
(Copied this idea from vilbert)
"""
def __init__(self, db_path, ext, in_memory=False):
self.db_path = db_path
self.ext = ext
if self.ext == '.npy':
self.loader = lambda x: np.load(six.BytesIO(x))
else:
def load_npz(x):
x = np.load(six.BytesIO(x))
return x['feat'] if 'feat' in x else x['z'] # normally it should be 'feat', but under cocotest_bu, the key is saved to be 'z' mistakenly.
self.loader = load_npz
if db_path.endswith('.lmdb'):
self.db_type = 'lmdb'
self.lmdb = lmdbdict(db_path, unsafe=True)
self.lmdb._key_dumps = DUMPS_FUNC['ascii']
self.lmdb._value_loads = LOADS_FUNC['identity']
elif db_path.endswith('.pth'): # Assume a key,value dictionary
self.db_type = 'pth'
self.feat_file = torch.load(db_path)
self.loader = lambda x: x
print('HybridLoader: ext is ignored')
elif db_path.endswith('h5'):
self.db_type = 'h5'
self.loader = lambda x: np.array(x).astype('float32')
else:
self.db_type = 'dir'
self.in_memory = in_memory
if self.in_memory:
self.features = {}
def get(self, key):
if self.in_memory and key in self.features:
# We save f_input because we want to save the
# compressed bytes to save memory
f_input = self.features[key]
elif self.db_type == 'lmdb':
f_input = self.lmdb[key]
elif self.db_type == 'pth':
f_input = self.feat_file[key]
elif self.db_type == 'h5':
f_input = h5py.File(self.db_path, 'r')[key]
else:
f_input = open(os.path.join(self.db_path, key + self.ext), 'rb').read()
if self.in_memory and key not in self.features:
self.features[key] = f_input
# load image
feat = self.loader(f_input)
return feat
class Dataset(data.Dataset):
def get_vocab_size(self):
return self.vocab_size
def get_vocab(self):
return self.ix_to_word
def get_seq_length(self):
return self.seq_length
def __init__(self, opt):
self.opt = opt
self.seq_per_img = opt.seq_per_img
# feature related options
self.use_fc = getattr(opt, 'use_fc', True)
self.use_att = getattr(opt, 'use_att', True)
self.use_box = getattr(opt, 'use_box', 0)
self.norm_att_feat = getattr(opt, 'norm_att_feat', 0)
self.norm_box_feat = getattr(opt, 'norm_box_feat', 0)
# load the json file which contains additional information about the dataset
print('DataLoader loading json file: ', opt.input_json)
self.info = json.load(open(self.opt.input_json))
if 'ix_to_word' in self.info:
self.ix_to_word = self.info['ix_to_word']
self.vocab_size = len(self.ix_to_word)
print('vocab size is ', self.vocab_size)
# open the hdf5 file
print('DataLoader loading h5 file: ', opt.input_fc_dir, opt.input_att_dir, opt.input_box_dir, opt.input_label_h5)
"""
Setting input_label_h5 to none is used when only doing generation.
For example, when you need to test on coco test set.
"""
if self.opt.input_label_h5 != 'none':
self.h5_label_file = h5py.File(self.opt.input_label_h5, 'r', driver='core')
# load in the sequence data
seq_size = self.h5_label_file['labels'].shape
self.label = self.h5_label_file['labels'][:]
self.seq_length = seq_size[1]
print('max sequence length in data is', self.seq_length)
# load the pointers in full to RAM (should be small enough)
self.label_start_ix = self.h5_label_file['label_start_ix'][:]
self.label_end_ix = self.h5_label_file['label_end_ix'][:]
else:
self.seq_length = 1
self.data_in_memory = getattr(opt, 'data_in_memory', False)
self.fc_loader = HybridLoader(self.opt.input_fc_dir, '.npy', in_memory=self.data_in_memory)
self.att_loader = HybridLoader(self.opt.input_att_dir, '.npz', in_memory=self.data_in_memory)
self.box_loader = HybridLoader(self.opt.input_box_dir, '.npy', in_memory=self.data_in_memory)
self.num_images = len(self.info['images']) # self.label_start_ix.shape[0]
print('read %d image features' %(self.num_images))
# separate out indexes for each of the provided splits
self.split_ix = {'train': [], 'val': [], 'test': []}
for ix in range(len(self.info['images'])):
img = self.info['images'][ix]
if not 'split' in img:
self.split_ix['train'].append(ix)
self.split_ix['val'].append(ix)
self.split_ix['test'].append(ix)
elif img['split'] == 'train':
self.split_ix['train'].append(ix)
elif img['split'] == 'val':
self.split_ix['val'].append(ix)
elif img['split'] == 'test':
self.split_ix['test'].append(ix)
elif opt.train_only == 0: # restval
self.split_ix['train'].append(ix)
print('assigned %d images to split train' %len(self.split_ix['train']))
print('assigned %d images to split val' %len(self.split_ix['val']))
print('assigned %d images to split test' %len(self.split_ix['test']))
def get_captions(self, ix, seq_per_img):
# fetch the sequence labels
ix1 = self.label_start_ix[ix] - 1 #label_start_ix starts from 1
ix2 = self.label_end_ix[ix] - 1
ncap = ix2 - ix1 + 1 # number of captions available for this image
assert ncap > 0, 'an image does not have any label. this can be handled but right now isn\'t'
random.seed(42)
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
if ncap < seq_per_img:
# we need to subsample (with replacement)
seq = np.zeros([seq_per_img, self.seq_length], dtype = 'int')
for q in range(seq_per_img):
ixl = random.randint(ix1,ix2)
seq[q, :] = self.label[ixl, :self.seq_length]
else:
ixl = random.randint(ix1, ix2 - seq_per_img + 1)
seq = self.label[ixl: ixl + seq_per_img, :self.seq_length]
return seq
def collate_func(self, batch, split):
seq_per_img = self.seq_per_img
fc_batch = []
att_batch = []
label_batch = []
wrapped = False
infos = []
gts = []
for sample in batch:
# fetch image
tmp_fc, tmp_att, tmp_seq, \
ix, it_pos_now, tmp_wrapped = sample
if tmp_wrapped:
wrapped = True
fc_batch.append(tmp_fc)
att_batch.append(tmp_att)
tmp_label = np.zeros([seq_per_img, self.seq_length + 2], dtype = 'int')
if hasattr(self, 'h5_label_file'):
# if there is ground truth
tmp_label[:, 1 : self.seq_length + 1] = tmp_seq
label_batch.append(tmp_label)
# Used for reward evaluation
if hasattr(self, 'h5_label_file'):
# if there is ground truth
gts.append(self.label[self.label_start_ix[ix] - 1: self.label_end_ix[ix]])
else:
gts.append([])
# record associated info as well
info_dict = {}
info_dict['ix'] = ix
info_dict['id'] = self.info['images'][ix]['id']
info_dict['file_path'] = self.info['images'][ix].get('file_path', '')
infos.append(info_dict)
# #sort by att_feat length
# fc_batch, att_batch, label_batch, gts, infos = \
# zip(*sorted(zip(fc_batch, att_batch, np.vsplit(label_batch, batch_size), gts, infos), key=lambda x: len(x[1]), reverse=True))
fc_batch, att_batch, label_batch, gts, infos = \
zip(*sorted(zip(fc_batch, att_batch, label_batch, gts, infos), key=lambda x: 0, reverse=True))
data = {}
data['fc_feats'] = np.stack(fc_batch)
# merge att_feats
max_att_len = max([_.shape[0] for _ in att_batch])
data['att_feats'] = np.zeros([len(att_batch), max_att_len, att_batch[0].shape[1]], dtype = 'float32')
for i in range(len(att_batch)):
data['att_feats'][i, :att_batch[i].shape[0]] = att_batch[i]
data['att_masks'] = np.zeros(data['att_feats'].shape[:2], dtype='float32')
for i in range(len(att_batch)):
data['att_masks'][i, :att_batch[i].shape[0]] = 1
# set att_masks to None if attention features have same length
if data['att_masks'].sum() == data['att_masks'].size:
data['att_masks'] = None
data['labels'] = np.vstack(label_batch)
# generate mask
nonzeros = np.array(list(map(lambda x: (x != 0).sum()+2, data['labels'])))
mask_batch = np.zeros([data['labels'].shape[0], self.seq_length + 2], dtype = 'float32')
for ix, row in enumerate(mask_batch):
row[:nonzeros[ix]] = 1
data['masks'] = mask_batch
data['labels'] = data['labels'].reshape(len(batch), seq_per_img, -1)
data['masks'] = data['masks'].reshape(len(batch), seq_per_img, -1)
data['gts'] = gts # all ground truth captions of each images
data['bounds'] = {'it_pos_now': it_pos_now, # the it_pos_now of the last sample
'it_max': len(self.split_ix[split]), 'wrapped': wrapped}
data['infos'] = infos
data = {k:torch.from_numpy(v) if type(v) is np.ndarray else v for k,v in data.items()} # Turn all ndarray to torch tensor
return data
def __getitem__(self, index):
"""This function returns a tuple that is further passed to collate_fn
"""
ix, it_pos_now, wrapped = index #self.split_ix[index]
if self.use_att:
att_feat = self.att_loader.get(str(self.info['images'][ix]['id']))
# shape: (14,14,4096)
# Reshape to K x C
att_feat = att_feat.reshape(-1, att_feat.shape[-1])
# shape:(196,4096)
if self.norm_att_feat:
att_feat = att_feat / np.linalg.norm(att_feat, 2, 1, keepdims=True)
if self.use_box:
box_feat = self.box_loader.get(str(self.info['images'][ix]['id']))
# devided by image width and height
x1,y1,x2,y2 = np.hsplit(box_feat, 4)
h,w = self.info['images'][ix]['height'], self.info['images'][ix]['width']
box_feat = np.hstack((x1/w, y1/h, x2/w, y2/h, (x2-x1)*(y2-y1)/(w*h))) # question? x2-x1+1??
if self.norm_box_feat:
box_feat = box_feat / np.linalg.norm(box_feat, 2, 1, keepdims=True)
att_feat = np.hstack([att_feat, box_feat])
# sort the features by the size of boxes
att_feat = np.stack(sorted(att_feat, key=lambda x:x[-1], reverse=True))
else:
att_feat = np.zeros((0,0), dtype='float32')
if self.use_fc:
try:
fc_feat = self.fc_loader.get(str(self.info['images'][ix]['id']))
except:
# Use average of attention when there is no fc provided (For bottomup feature)
fc_feat = att_feat.mean(0)
else:
fc_feat = np.zeros((0), dtype='float32')
if hasattr(self, 'h5_label_file'):
seq = self.get_captions(ix, self.seq_per_img)
else:
seq = None
return (fc_feat,
att_feat, seq,
ix, it_pos_now, wrapped)
def __len__(self):
return len(self.info['images'])
class DataLoader:
def __init__(self, opt):
self.opt = opt
self.batch_size = self.opt.batch_size
self.dataset = Dataset(opt)
# Initialize loaders and iters
self.loaders, self.iters = {}, {}
for split in ['train', 'val', 'test']:
if split == 'train':
sampler = MySampler(self.dataset.split_ix[split], shuffle=True, wrap=True)
else:
sampler = MySampler(self.dataset.split_ix[split], shuffle=False, wrap=False)
self.loaders[split] = data.DataLoader(dataset=self.dataset,
batch_size=self.batch_size,
sampler=sampler,
pin_memory=True,
num_workers=4, # 4 is usually enough
collate_fn=partial(self.dataset.collate_func, split=split),
drop_last=False)
self.iters[split] = iter(self.loaders[split])
def get_batch(self, split):
try:
data = next(self.iters[split])
except StopIteration:
self.iters[split] = iter(self.loaders[split])
data = next(self.iters[split])
return data
def reset_iterator(self, split):
self.loaders[split].sampler._reset_iter()
self.iters[split] = iter(self.loaders[split])
def get_vocab_size(self):
return self.dataset.get_vocab_size()
@property
def vocab_size(self):
return self.get_vocab_size()
def get_vocab(self):
return self.dataset.get_vocab()
def get_seq_length(self):
return self.dataset.get_seq_length()
@property
def seq_length(self):
return self.get_seq_length()
def state_dict(self):
def get_prefetch_num(split):
if self.loaders[split].num_workers > 0:
return (self.iters[split]._send_idx - self.iters[split]._rcvd_idx) * self.batch_size
else:
return 0
return {split: loader.sampler.state_dict(get_prefetch_num(split)) \
for split, loader in self.loaders.items()}
def load_state_dict(self, state_dict=None):
if state_dict is None:
return
for split in self.loaders.keys():
self.loaders[split].sampler.load_state_dict(state_dict[split])
class MySampler(data.sampler.Sampler):
def __init__(self, index_list, shuffle, wrap):
self.index_list = index_list
self.shuffle = shuffle
self.wrap = wrap
# if wrap, there will be not stop iteration called
# wrap True used during training, and wrap False used during test.
self._reset_iter()
def __iter__(self):
return self
def __next__(self):
wrapped = False
if self.iter_counter == len(self._index_list):
self._reset_iter()
if self.wrap:
wrapped = True
else:
raise StopIteration()
if len(self._index_list) == 0: # overflow when 0 samples
return None
elem = (self._index_list[self.iter_counter], self.iter_counter+1, wrapped)
self.iter_counter += 1
return elem
def next(self):
return self.__next__()
def _reset_iter(self):
np.random.seed(42)
if self.shuffle:
rand_perm = npr.permutation(len(self.index_list))
self._index_list = [self.index_list[_] for _ in rand_perm]
else:
self._index_list = self.index_list
self.iter_counter = 0
def __len__(self):
return len(self.index_list)
def load_state_dict(self, state_dict=None):
if state_dict is None:
return
self._index_list = state_dict['index_list']
self.iter_counter = state_dict['iter_counter']
def state_dict(self, prefetched_num=None):
prefetched_num = prefetched_num or 0
return {
'index_list': self._index_list,
'iter_counter': self.iter_counter - prefetched_num
}