Spaces:
Sleeping
Sleeping
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import json | |
import h5py | |
from lmdbdict import lmdbdict | |
from lmdbdict.methods import DUMPS_FUNC, LOADS_FUNC | |
import os | |
import numpy as np | |
import numpy.random as npr | |
import random | |
from functools import partial | |
import torch | |
import torch.utils.data as data | |
import multiprocessing | |
import six | |
class HybridLoader: | |
""" | |
If db_path is a director, then use normal file loading | |
If lmdb, then load from lmdb | |
The loading method depend on extention. | |
in_memory: if in_memory is True, we save all the features in memory | |
For individual np(y|z)s, we don't need to do that because the system will do this for us. | |
Should be useful for lmdb or h5. | |
(Copied this idea from vilbert) | |
""" | |
def __init__(self, db_path, ext, in_memory=False): | |
self.db_path = db_path | |
self.ext = ext | |
if self.ext == '.npy': | |
self.loader = lambda x: np.load(six.BytesIO(x)) | |
else: | |
def load_npz(x): | |
x = np.load(six.BytesIO(x)) | |
return x['feat'] if 'feat' in x else x['z'] # normally it should be 'feat', but under cocotest_bu, the key is saved to be 'z' mistakenly. | |
self.loader = load_npz | |
if db_path.endswith('.lmdb'): | |
self.db_type = 'lmdb' | |
self.lmdb = lmdbdict(db_path, unsafe=True) | |
self.lmdb._key_dumps = DUMPS_FUNC['ascii'] | |
self.lmdb._value_loads = LOADS_FUNC['identity'] | |
elif db_path.endswith('.pth'): # Assume a key,value dictionary | |
self.db_type = 'pth' | |
self.feat_file = torch.load(db_path) | |
self.loader = lambda x: x | |
print('HybridLoader: ext is ignored') | |
elif db_path.endswith('h5'): | |
self.db_type = 'h5' | |
self.loader = lambda x: np.array(x).astype('float32') | |
else: | |
self.db_type = 'dir' | |
self.in_memory = in_memory | |
if self.in_memory: | |
self.features = {} | |
def get(self, key): | |
if self.in_memory and key in self.features: | |
# We save f_input because we want to save the | |
# compressed bytes to save memory | |
f_input = self.features[key] | |
elif self.db_type == 'lmdb': | |
f_input = self.lmdb[key] | |
elif self.db_type == 'pth': | |
f_input = self.feat_file[key] | |
elif self.db_type == 'h5': | |
f_input = h5py.File(self.db_path, 'r')[key] | |
else: | |
f_input = open(os.path.join(self.db_path, key + self.ext), 'rb').read() | |
if self.in_memory and key not in self.features: | |
self.features[key] = f_input | |
# load image | |
feat = self.loader(f_input) | |
return feat | |
class Dataset(data.Dataset): | |
def get_vocab_size(self): | |
return self.vocab_size | |
def get_vocab(self): | |
return self.ix_to_word | |
def get_seq_length(self): | |
return self.seq_length | |
def __init__(self, opt): | |
self.opt = opt | |
self.seq_per_img = opt.seq_per_img | |
# feature related options | |
self.use_fc = getattr(opt, 'use_fc', True) | |
self.use_att = getattr(opt, 'use_att', True) | |
self.use_box = getattr(opt, 'use_box', 0) | |
self.norm_att_feat = getattr(opt, 'norm_att_feat', 0) | |
self.norm_box_feat = getattr(opt, 'norm_box_feat', 0) | |
# load the json file which contains additional information about the dataset | |
print('DataLoader loading json file: ', opt.input_json) | |
self.info = json.load(open(self.opt.input_json)) | |
if 'ix_to_word' in self.info: | |
self.ix_to_word = self.info['ix_to_word'] | |
self.vocab_size = len(self.ix_to_word) | |
print('vocab size is ', self.vocab_size) | |
# open the hdf5 file | |
print('DataLoader loading h5 file: ', opt.input_fc_dir, opt.input_att_dir, opt.input_box_dir, opt.input_label_h5) | |
""" | |
Setting input_label_h5 to none is used when only doing generation. | |
For example, when you need to test on coco test set. | |
""" | |
if self.opt.input_label_h5 != 'none': | |
self.h5_label_file = h5py.File(self.opt.input_label_h5, 'r', driver='core') | |
# load in the sequence data | |
seq_size = self.h5_label_file['labels'].shape | |
self.label = self.h5_label_file['labels'][:] | |
self.seq_length = seq_size[1] | |
print('max sequence length in data is', self.seq_length) | |
# load the pointers in full to RAM (should be small enough) | |
self.label_start_ix = self.h5_label_file['label_start_ix'][:] | |
self.label_end_ix = self.h5_label_file['label_end_ix'][:] | |
else: | |
self.seq_length = 1 | |
self.data_in_memory = getattr(opt, 'data_in_memory', False) | |
self.fc_loader = HybridLoader(self.opt.input_fc_dir, '.npy', in_memory=self.data_in_memory) | |
self.att_loader = HybridLoader(self.opt.input_att_dir, '.npz', in_memory=self.data_in_memory) | |
self.box_loader = HybridLoader(self.opt.input_box_dir, '.npy', in_memory=self.data_in_memory) | |
self.num_images = len(self.info['images']) # self.label_start_ix.shape[0] | |
print('read %d image features' %(self.num_images)) | |
# separate out indexes for each of the provided splits | |
self.split_ix = {'train': [], 'val': [], 'test': []} | |
for ix in range(len(self.info['images'])): | |
img = self.info['images'][ix] | |
if not 'split' in img: | |
self.split_ix['train'].append(ix) | |
self.split_ix['val'].append(ix) | |
self.split_ix['test'].append(ix) | |
elif img['split'] == 'train': | |
self.split_ix['train'].append(ix) | |
elif img['split'] == 'val': | |
self.split_ix['val'].append(ix) | |
elif img['split'] == 'test': | |
self.split_ix['test'].append(ix) | |
elif opt.train_only == 0: # restval | |
self.split_ix['train'].append(ix) | |
print('assigned %d images to split train' %len(self.split_ix['train'])) | |
print('assigned %d images to split val' %len(self.split_ix['val'])) | |
print('assigned %d images to split test' %len(self.split_ix['test'])) | |
def get_captions(self, ix, seq_per_img): | |
# fetch the sequence labels | |
ix1 = self.label_start_ix[ix] - 1 #label_start_ix starts from 1 | |
ix2 = self.label_end_ix[ix] - 1 | |
ncap = ix2 - ix1 + 1 # number of captions available for this image | |
assert ncap > 0, 'an image does not have any label. this can be handled but right now isn\'t' | |
random.seed(42) | |
torch.manual_seed(42) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(42) | |
if ncap < seq_per_img: | |
# we need to subsample (with replacement) | |
seq = np.zeros([seq_per_img, self.seq_length], dtype = 'int') | |
for q in range(seq_per_img): | |
ixl = random.randint(ix1,ix2) | |
seq[q, :] = self.label[ixl, :self.seq_length] | |
else: | |
ixl = random.randint(ix1, ix2 - seq_per_img + 1) | |
seq = self.label[ixl: ixl + seq_per_img, :self.seq_length] | |
return seq | |
def collate_func(self, batch, split): | |
seq_per_img = self.seq_per_img | |
fc_batch = [] | |
att_batch = [] | |
label_batch = [] | |
wrapped = False | |
infos = [] | |
gts = [] | |
for sample in batch: | |
# fetch image | |
tmp_fc, tmp_att, tmp_seq, \ | |
ix, it_pos_now, tmp_wrapped = sample | |
if tmp_wrapped: | |
wrapped = True | |
fc_batch.append(tmp_fc) | |
att_batch.append(tmp_att) | |
tmp_label = np.zeros([seq_per_img, self.seq_length + 2], dtype = 'int') | |
if hasattr(self, 'h5_label_file'): | |
# if there is ground truth | |
tmp_label[:, 1 : self.seq_length + 1] = tmp_seq | |
label_batch.append(tmp_label) | |
# Used for reward evaluation | |
if hasattr(self, 'h5_label_file'): | |
# if there is ground truth | |
gts.append(self.label[self.label_start_ix[ix] - 1: self.label_end_ix[ix]]) | |
else: | |
gts.append([]) | |
# record associated info as well | |
info_dict = {} | |
info_dict['ix'] = ix | |
info_dict['id'] = self.info['images'][ix]['id'] | |
info_dict['file_path'] = self.info['images'][ix].get('file_path', '') | |
infos.append(info_dict) | |
# #sort by att_feat length | |
# fc_batch, att_batch, label_batch, gts, infos = \ | |
# zip(*sorted(zip(fc_batch, att_batch, np.vsplit(label_batch, batch_size), gts, infos), key=lambda x: len(x[1]), reverse=True)) | |
fc_batch, att_batch, label_batch, gts, infos = \ | |
zip(*sorted(zip(fc_batch, att_batch, label_batch, gts, infos), key=lambda x: 0, reverse=True)) | |
data = {} | |
data['fc_feats'] = np.stack(fc_batch) | |
# merge att_feats | |
max_att_len = max([_.shape[0] for _ in att_batch]) | |
data['att_feats'] = np.zeros([len(att_batch), max_att_len, att_batch[0].shape[1]], dtype = 'float32') | |
for i in range(len(att_batch)): | |
data['att_feats'][i, :att_batch[i].shape[0]] = att_batch[i] | |
data['att_masks'] = np.zeros(data['att_feats'].shape[:2], dtype='float32') | |
for i in range(len(att_batch)): | |
data['att_masks'][i, :att_batch[i].shape[0]] = 1 | |
# set att_masks to None if attention features have same length | |
if data['att_masks'].sum() == data['att_masks'].size: | |
data['att_masks'] = None | |
data['labels'] = np.vstack(label_batch) | |
# generate mask | |
nonzeros = np.array(list(map(lambda x: (x != 0).sum()+2, data['labels']))) | |
mask_batch = np.zeros([data['labels'].shape[0], self.seq_length + 2], dtype = 'float32') | |
for ix, row in enumerate(mask_batch): | |
row[:nonzeros[ix]] = 1 | |
data['masks'] = mask_batch | |
data['labels'] = data['labels'].reshape(len(batch), seq_per_img, -1) | |
data['masks'] = data['masks'].reshape(len(batch), seq_per_img, -1) | |
data['gts'] = gts # all ground truth captions of each images | |
data['bounds'] = {'it_pos_now': it_pos_now, # the it_pos_now of the last sample | |
'it_max': len(self.split_ix[split]), 'wrapped': wrapped} | |
data['infos'] = infos | |
data = {k:torch.from_numpy(v) if type(v) is np.ndarray else v for k,v in data.items()} # Turn all ndarray to torch tensor | |
return data | |
def __getitem__(self, index): | |
"""This function returns a tuple that is further passed to collate_fn | |
""" | |
ix, it_pos_now, wrapped = index #self.split_ix[index] | |
if self.use_att: | |
att_feat = self.att_loader.get(str(self.info['images'][ix]['id'])) | |
# Reshape to K x C | |
att_feat = att_feat.reshape(-1, att_feat.shape[-1]) | |
if self.norm_att_feat: | |
att_feat = att_feat / np.linalg.norm(att_feat, 2, 1, keepdims=True) | |
if self.use_box: | |
box_feat = self.box_loader.get(str(self.info['images'][ix]['id'])) | |
# devided by image width and height | |
x1,y1,x2,y2 = np.hsplit(box_feat, 4) | |
h,w = self.info['images'][ix]['height'], self.info['images'][ix]['width'] | |
box_feat = np.hstack((x1/w, y1/h, x2/w, y2/h, (x2-x1)*(y2-y1)/(w*h))) # question? x2-x1+1?? | |
if self.norm_box_feat: | |
box_feat = box_feat / np.linalg.norm(box_feat, 2, 1, keepdims=True) | |
att_feat = np.hstack([att_feat, box_feat]) | |
# sort the features by the size of boxes | |
att_feat = np.stack(sorted(att_feat, key=lambda x:x[-1], reverse=True)) | |
else: | |
att_feat = np.zeros((0,0), dtype='float32') | |
if self.use_fc: | |
try: | |
fc_feat = self.fc_loader.get(str(self.info['images'][ix]['id'])) | |
except: | |
# Use average of attention when there is no fc provided (For bottomup feature) | |
fc_feat = att_feat.mean(0) | |
else: | |
fc_feat = np.zeros((0), dtype='float32') | |
if hasattr(self, 'h5_label_file'): | |
seq = self.get_captions(ix, self.seq_per_img) | |
else: | |
seq = None | |
return (fc_feat, | |
att_feat, seq, | |
ix, it_pos_now, wrapped) | |
def __len__(self): | |
return len(self.info['images']) | |
class DataLoader: | |
def __init__(self, opt): | |
self.opt = opt | |
self.batch_size = self.opt.batch_size | |
self.dataset = Dataset(opt) | |
# Initialize loaders and iters | |
self.loaders, self.iters = {}, {} | |
for split in ['train', 'val', 'test']: | |
if split == 'train': | |
sampler = MySampler(self.dataset.split_ix[split], shuffle=True, wrap=True) | |
else: | |
sampler = MySampler(self.dataset.split_ix[split], shuffle=False, wrap=False) | |
self.loaders[split] = data.DataLoader(dataset=self.dataset, | |
batch_size=self.batch_size, | |
sampler=sampler, | |
pin_memory=True, | |
num_workers=4, # 4 is usually enough | |
collate_fn=partial(self.dataset.collate_func, split=split), | |
drop_last=False) | |
self.iters[split] = iter(self.loaders[split]) | |
def get_batch(self, split): | |
try: | |
data = next(self.iters[split]) | |
except StopIteration: | |
self.iters[split] = iter(self.loaders[split]) | |
data = next(self.iters[split]) | |
return data | |
def reset_iterator(self, split): | |
self.loaders[split].sampler._reset_iter() | |
self.iters[split] = iter(self.loaders[split]) | |
def get_vocab_size(self): | |
return self.dataset.get_vocab_size() | |
def vocab_size(self): | |
return self.get_vocab_size() | |
def get_vocab(self): | |
return self.dataset.get_vocab() | |
def get_seq_length(self): | |
return self.dataset.get_seq_length() | |
def seq_length(self): | |
return self.get_seq_length() | |
def state_dict(self): | |
def get_prefetch_num(split): | |
if self.loaders[split].num_workers > 0: | |
return (self.iters[split]._send_idx - self.iters[split]._rcvd_idx) * self.batch_size | |
else: | |
return 0 | |
return {split: loader.sampler.state_dict(get_prefetch_num(split)) \ | |
for split, loader in self.loaders.items()} | |
def load_state_dict(self, state_dict=None): | |
if state_dict is None: | |
return | |
for split in self.loaders.keys(): | |
self.loaders[split].sampler.load_state_dict(state_dict[split]) | |
class MySampler(data.sampler.Sampler): | |
def __init__(self, index_list, shuffle, wrap): | |
self.index_list = index_list | |
self.shuffle = shuffle | |
self.wrap = wrap | |
# if wrap, there will be not stop iteration called | |
# wrap True used during training, and wrap False used during test. | |
self._reset_iter() | |
def __iter__(self): | |
return self | |
def __next__(self): | |
wrapped = False | |
if self.iter_counter == len(self._index_list): | |
self._reset_iter() | |
if self.wrap: | |
wrapped = True | |
else: | |
raise StopIteration() | |
if len(self._index_list) == 0: # overflow when 0 samples | |
return None | |
elem = (self._index_list[self.iter_counter], self.iter_counter+1, wrapped) | |
self.iter_counter += 1 | |
return elem | |
def next(self): | |
return self.__next__() | |
def _reset_iter(self): | |
np.random.seed(0) | |
if self.shuffle: | |
rand_perm = npr.permutation(len(self.index_list)) | |
self._index_list = [self.index_list[_] for _ in rand_perm] | |
else: | |
self._index_list = self.index_list | |
self.iter_counter = 0 | |
def __len__(self): | |
return len(self.index_list) | |
def load_state_dict(self, state_dict=None): | |
if state_dict is None: | |
return | |
self._index_list = state_dict['index_list'] | |
self.iter_counter = state_dict['iter_counter'] | |
def state_dict(self, prefetched_num=None): | |
prefetched_num = prefetched_num or 0 | |
return { | |
'index_list': self._index_list, | |
'iter_counter': self.iter_counter - prefetched_num | |
} | |