yashonwu
add captioning
9bf9e42
# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model
# AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning
# https://arxiv.org/abs/1612.01887
# AdaAttMO is a modified version with maxout lstm
# Att2in is from Self-critical Sequence Training for Image Captioning
# https://arxiv.org/abs/1612.00563
# In this file we only have Att2in2, which is a slightly different version of att2in,
# in which the img feature embedding and word embedding is the same as what in adaatt.
# UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA
# https://arxiv.org/abs/1707.07998
# However, it may not be identical to the author's architecture.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from . import utils
from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence
from .CaptionModel import CaptionModel
bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am']
bad_endings += ['UNK', 'has', 'and', 'more']
def sort_pack_padded_sequence(input, lengths):
sorted_lengths, indices = torch.sort(lengths, descending=True)
tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True)
inv_ix = indices.clone()
inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix)
return tmp, inv_ix
def pad_unsort_packed_sequence(input, inv_ix):
tmp, _ = pad_packed_sequence(input, batch_first=True)
tmp = tmp[inv_ix]
return tmp
def pack_wrapper(module, att_feats, att_masks):
if att_masks is not None:
packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1))
return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix)
else:
return module(att_feats)
class AttModel(CaptionModel):
def __init__(self, opt):
super(AttModel, self).__init__()
self.vocab_size = opt.vocab_size
self.input_encoding_size = opt.input_encoding_size
#self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.seq_length = getattr(opt, 'max_length', 16) or opt.seq_length # maximum sample length
self.fc_feat_size = opt.fc_feat_size
self.att_feat_size = opt.att_feat_size
self.att_hid_size = opt.att_hid_size
self.bos_idx = getattr(opt, 'bos_idx', 0)
self.eos_idx = getattr(opt, 'eos_idx', 0)
self.pad_idx = getattr(opt, 'pad_idx', 0)
self.use_bn = getattr(opt, 'use_bn', 0)
self.ss_prob = 0.0 # Schedule sampling probability
self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm))
self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm))
self.att_embed = nn.Sequential(*(
((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+
(nn.Linear(self.att_feat_size, self.rnn_size),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm))+
((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ())))
self.logit_layers = getattr(opt, 'logit_layers', 1)
if self.logit_layers == 1:
self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1)
else:
self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)]
self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)]))
self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size)
# For remove bad endding
self.vocab = opt.vocab
self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings]
def init_hidden(self, bsz):
weight = self.logit.weight \
if hasattr(self.logit, "weight") \
else self.logit[0].weight
return (weight.new_zeros(self.num_layers, bsz, self.rnn_size),
weight.new_zeros(self.num_layers, bsz, self.rnn_size))
def clip_att(self, att_feats, att_masks):
# Clip the length of att_masks and att_feats to the maximum length
if att_masks is not None:
max_len = att_masks.data.long().sum(1).max()
att_feats = att_feats[:, :max_len].contiguous()
att_masks = att_masks[:, :max_len].contiguous()
return att_feats, att_masks
def _prepare_feature(self, fc_feats, att_feats, att_masks):
att_feats, att_masks = self.clip_att(att_feats, att_masks)
# embed fc and att feats
fc_feats = self.fc_embed(fc_feats)
att_feats = pack_wrapper(self.att_embed, att_feats, att_masks)
# Project the attention feats first to reduce memory and computation comsumptions.
p_att_feats = self.ctx2att(att_feats)
return fc_feats, att_feats, p_att_feats, att_masks
def _forward(self, fc_feats, att_feats, seq, att_masks=None):
batch_size = fc_feats.size(0)
if seq.ndim == 3: # B * seq_per_img * seq_len
seq = seq.reshape(-1, seq.shape[2])
seq_per_img = seq.shape[0] // batch_size
state = self.init_hidden(batch_size*seq_per_img)
outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1)
# Prepare the features
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
# pp_att_feats is used for attention, we cache it in advance to reduce computation cost
if seq_per_img > 1:
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(seq_per_img,
[p_fc_feats, p_att_feats, pp_att_feats, p_att_masks]
)
for i in range(seq.size(1)):
if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample
sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1)
sample_mask = sample_prob < self.ss_prob
if sample_mask.sum() == 0:
it = seq[:, i].clone()
else:
sample_ind = sample_mask.nonzero().view(-1)
it = seq[:, i].data.clone()
prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1)
it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind))
else:
it = seq[:, i].clone()
# break if all the sequences end
if i >= 1 and seq[:, i].sum() == 0:
break
output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state)
outputs[:, i] = output
return outputs
def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, state, output_logsoftmax=1):
# 'it' contains a word index
xt = self.embed(it)
output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks)
if output_logsoftmax:
logprobs = F.log_softmax(self.logit(output), dim=1)
else:
logprobs = self.logit(output)
return logprobs, state
def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
beam_size = opt.get('beam_size', 10)
group_size = opt.get('group_size', 1)
sample_n = opt.get('sample_n', 10)
# when sample_n == beam_size then each beam is a sample.
assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search'
batch_size = fc_feats.size(0)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
# lets process every image independently for now, for simplicity
self.done_beams = [[] for _ in range(batch_size)]
for k in range(batch_size):
state = self.init_hidden(beam_size)
tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = utils.repeat_tensors(beam_size,
[p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None]
)
for t in range(1):
if t == 0: # input <bos>
it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long)
logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state)
self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt)
if sample_n == beam_size:
for _n in range(sample_n):
seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq']
seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps']
else:
seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
seqLogprobs[k, :] = self.done_beams[k][0]['logps']
# return the samples and their log likelihoods
return seq, seqLogprobs
def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
beam_size = opt.get('beam_size', 10)
group_size = opt.get('group_size', 1)
sample_n = opt.get('sample_n', 10)
# when sample_n == beam_size then each beam is a sample.
assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search'
batch_size = fc_feats.size(0)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
# lets process every image independently for now, for simplicity
self.done_beams = [[] for _ in range(batch_size)]
state = self.init_hidden(batch_size)
# first step, feed bos
it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long)
logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(beam_size,
[p_fc_feats, p_att_feats, pp_att_feats, p_att_masks]
)
self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, opt=opt)
for k in range(batch_size):
if sample_n == beam_size:
for _n in range(sample_n):
seq_len = self.done_beams[k][_n]['seq'].shape[0]
seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq']
seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps']
else:
seq_len = self.done_beams[k][0]['seq'].shape[0]
seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps']
# return the samples and their log likelihoods
return seq, seqLogprobs
def _sample(self, fc_feats, att_feats, att_masks=None, opt={}):
sample_method = opt.get('sample_method', 'greedy')
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
sample_n = int(opt.get('sample_n', 1))
group_size = opt.get('group_size', 1)
output_logsoftmax = opt.get('output_logsoftmax', 1)
decoding_constraint = opt.get('decoding_constraint', 0)
block_trigrams = opt.get('block_trigrams', 0)
remove_bad_endings = opt.get('remove_bad_endings', 1)
suppress_UNK = opt.get('suppress_UNK', 1)
if beam_size > 1 and sample_method in ['greedy', 'beam_search']:
return self._sample_beam(fc_feats, att_feats, att_masks, opt)
if group_size > 1:
return self._diverse_sample(fc_feats, att_feats, att_masks, opt)
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size*sample_n)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
if sample_n > 1:
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n,
[p_fc_feats, p_att_feats, pp_att_feats, p_att_masks]
)
trigrams = [] # will be a list of batch_size dictionaries
seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
for t in range(self.seq_length + 1):
if t == 0: # input <bos>
it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long)
logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, output_logsoftmax=output_logsoftmax)
if decoding_constraint and t > 0:
tmp = logprobs.new_zeros(logprobs.size())
tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf'))
logprobs = logprobs + tmp
if remove_bad_endings and t > 0:
logprobs[torch.from_numpy(np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)), 0] = float('-inf')
# suppress UNK tokens in the decoding
if suppress_UNK and hasattr(self, 'vocab') and self.vocab[str(logprobs.size(1)-1)] == 'UNK':
logprobs[:,logprobs.size(1)-1] = logprobs[:, logprobs.size(1)-1] - 1000
# if remove_bad_endings and t > 0:
# tmp = logprobs.new_zeros(logprobs.size())
# prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)
# # Make it impossible to generate bad_endings
# tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf')
# logprobs = logprobs + tmp
# Mess with trigrams
# Copy from https://github.com/lukemelas/image-paragraph-captioning
if block_trigrams and t >= 3:
# Store trigram generated at last step
prev_two_batch = seq[:,t-3:t-1]
for i in range(batch_size): # = seq.size(0)
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
current = seq[i][t-1]
if t == 3: # initialize
trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int}
elif t > 3:
if prev_two in trigrams[i]: # add to list
trigrams[i][prev_two].append(current)
else: # create list
trigrams[i][prev_two] = [current]
# Block used trigrams at next step
prev_two_batch = seq[:,t-2:t]
mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size
for i in range(batch_size):
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
if prev_two in trigrams[i]:
for j in trigrams[i][prev_two]:
mask[i,j] += 1
# Apply mask to log probs
#logprobs = logprobs - (mask * 1e9)
alpha = 2.0 # = 4
logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best)
# sample the next word
if t == self.seq_length: # skip if we achieve maximum length
break
it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature)
# stop when all finished
if t == 0:
unfinished = it != self.eos_idx
else:
it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0
logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs)
unfinished = unfinished & (it != self.eos_idx)
seq[:,t] = it
seqLogprobs[:,t] = logprobs
# quit loop if all sequences have finished
if unfinished.sum() == 0:
break
return seq, seqLogprobs
def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}):
sample_method = opt.get('sample_method', 'greedy')
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
group_size = opt.get('group_size', 1)
diversity_lambda = opt.get('diversity_lambda', 0.5)
decoding_constraint = opt.get('decoding_constraint', 0)
block_trigrams = opt.get('block_trigrams', 0)
remove_bad_endings = opt.get('remove_bad_endings', 1)
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries
seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)]
seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)]
state_table = [self.init_hidden(batch_size) for _ in range(group_size)]
for tt in range(self.seq_length + group_size):
for divm in range(group_size):
t = tt - divm
seq = seq_table[divm]
seqLogprobs = seqLogprobs_table[divm]
trigrams = trigrams_table[divm]
if t >= 0 and t <= self.seq_length-1:
if t == 0: # input <bos>
it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long)
else:
it = seq[:, t-1] # changed
logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed
logprobs = F.log_softmax(logprobs / temperature, dim=-1)
# Add diversity
if divm > 0:
unaug_logprobs = logprobs.clone()
for prev_choice in range(divm):
prev_decisions = seq_table[prev_choice][:, t]
logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda
if decoding_constraint and t > 0:
tmp = logprobs.new_zeros(logprobs.size())
tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf'))
logprobs = logprobs + tmp
if remove_bad_endings and t > 0:
tmp = logprobs.new_zeros(logprobs.size())
prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)
# Impossible to generate remove_bad_endings
tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf')
logprobs = logprobs + tmp
# Mess with trigrams
if block_trigrams and t >= 3:
# Store trigram generated at last step
prev_two_batch = seq[:,t-3:t-1]
for i in range(batch_size): # = seq.size(0)
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
current = seq[i][t-1]
if t == 3: # initialize
trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int}
elif t > 3:
if prev_two in trigrams[i]: # add to list
trigrams[i][prev_two].append(current)
else: # create list
trigrams[i][prev_two] = [current]
# Block used trigrams at next step
prev_two_batch = seq[:,t-2:t]
mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size
for i in range(batch_size):
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
if prev_two in trigrams[i]:
for j in trigrams[i][prev_two]:
mask[i,j] += 1
# Apply mask to log probs
#logprobs = logprobs - (mask * 1e9)
alpha = 2.0 # = 4
logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best)
it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1)
# stop when all finished
if t == 0:
unfinished = it != self.eos_idx
else:
unfinished = (seq[:,t-1] != self.pad_idx) & (seq[:,t-1] != self.eos_idx)
it[~unfinished] = self.pad_idx
unfinished = unfinished & (it != self.eos_idx) # changed
seq[:,t] = it
seqLogprobs[:,t] = sampleLogprobs.view(-1)
return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1)
class AdaAtt_lstm(nn.Module):
def __init__(self, opt, use_maxout=True):
super(AdaAtt_lstm, self).__init__()
self.input_encoding_size = opt.input_encoding_size
#self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.fc_feat_size = opt.fc_feat_size
self.att_feat_size = opt.att_feat_size
self.att_hid_size = opt.att_hid_size
self.use_maxout = use_maxout
# Build a LSTM
self.w2h = nn.Linear(self.input_encoding_size, (4+(use_maxout==True)) * self.rnn_size)
self.v2h = nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size)
self.i2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers - 1)])
self.h2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers)])
# Layers for getting the fake region
if self.num_layers == 1:
self.r_w2h = nn.Linear(self.input_encoding_size, self.rnn_size)
self.r_v2h = nn.Linear(self.rnn_size, self.rnn_size)
else:
self.r_i2h = nn.Linear(self.rnn_size, self.rnn_size)
self.r_h2h = nn.Linear(self.rnn_size, self.rnn_size)
def forward(self, xt, img_fc, state):
hs = []
cs = []
for L in range(self.num_layers):
# c,h from previous timesteps
prev_h = state[0][L]
prev_c = state[1][L]
# the input to this layer
if L == 0:
x = xt
i2h = self.w2h(x) + self.v2h(img_fc)
else:
x = hs[-1]
x = F.dropout(x, self.drop_prob_lm, self.training)
i2h = self.i2h[L-1](x)
all_input_sums = i2h+self.h2h[L](prev_h)
sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size)
sigmoid_chunk = torch.sigmoid(sigmoid_chunk)
# decode the gates
in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size)
forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size)
out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size)
# decode the write inputs
if not self.use_maxout:
in_transform = torch.tanh(all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size))
else:
in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size)
in_transform = torch.max(\
in_transform.narrow(1, 0, self.rnn_size),
in_transform.narrow(1, self.rnn_size, self.rnn_size))
# perform the LSTM update
next_c = forget_gate * prev_c + in_gate * in_transform
# gated cells form the output
tanh_nex_c = torch.tanh(next_c)
next_h = out_gate * tanh_nex_c
if L == self.num_layers-1:
if L == 0:
i2h = self.r_w2h(x) + self.r_v2h(img_fc)
else:
i2h = self.r_i2h(x)
n5 = i2h+self.r_h2h(prev_h)
fake_region = torch.sigmoid(n5) * tanh_nex_c
cs.append(next_c)
hs.append(next_h)
# set up the decoder
top_h = hs[-1]
top_h = F.dropout(top_h, self.drop_prob_lm, self.training)
fake_region = F.dropout(fake_region, self.drop_prob_lm, self.training)
state = (torch.cat([_.unsqueeze(0) for _ in hs], 0),
torch.cat([_.unsqueeze(0) for _ in cs], 0))
return top_h, fake_region, state
class AdaAtt_attention(nn.Module):
def __init__(self, opt):
super(AdaAtt_attention, self).__init__()
self.input_encoding_size = opt.input_encoding_size
#self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.drop_prob_lm = opt.drop_prob_lm
self.att_hid_size = opt.att_hid_size
# fake region embed
self.fr_linear = nn.Sequential(
nn.Linear(self.rnn_size, self.input_encoding_size),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm))
self.fr_embed = nn.Linear(self.input_encoding_size, self.att_hid_size)
# h out embed
self.ho_linear = nn.Sequential(
nn.Linear(self.rnn_size, self.input_encoding_size),
nn.Tanh(),
nn.Dropout(self.drop_prob_lm))
self.ho_embed = nn.Linear(self.input_encoding_size, self.att_hid_size)
self.alpha_net = nn.Linear(self.att_hid_size, 1)
self.att2h = nn.Linear(self.rnn_size, self.rnn_size)
def forward(self, h_out, fake_region, conv_feat, conv_feat_embed, att_masks=None):
# View into three dimensions
att_size = conv_feat.numel() // conv_feat.size(0) // self.rnn_size
conv_feat = conv_feat.view(-1, att_size, self.rnn_size)
conv_feat_embed = conv_feat_embed.view(-1, att_size, self.att_hid_size)
# view neighbor from bach_size * neighbor_num x rnn_size to bach_size x rnn_size * neighbor_num
fake_region = self.fr_linear(fake_region)
fake_region_embed = self.fr_embed(fake_region)
h_out_linear = self.ho_linear(h_out)
h_out_embed = self.ho_embed(h_out_linear)
txt_replicate = h_out_embed.unsqueeze(1).expand(h_out_embed.size(0), att_size + 1, h_out_embed.size(1))
img_all = torch.cat([fake_region.view(-1,1,self.input_encoding_size), conv_feat], 1)
img_all_embed = torch.cat([fake_region_embed.view(-1,1,self.input_encoding_size), conv_feat_embed], 1)
hA = torch.tanh(img_all_embed + txt_replicate)
hA = F.dropout(hA,self.drop_prob_lm, self.training)
hAflat = self.alpha_net(hA.view(-1, self.att_hid_size))
PI = F.softmax(hAflat.view(-1, att_size + 1), dim=1)
if att_masks is not None:
att_masks = att_masks.view(-1, att_size)
PI = PI * torch.cat([att_masks[:,:1], att_masks], 1) # assume one one at the first time step.
PI = PI / PI.sum(1, keepdim=True)
visAtt = torch.bmm(PI.unsqueeze(1), img_all)
visAttdim = visAtt.squeeze(1)
atten_out = visAttdim + h_out_linear
h = torch.tanh(self.att2h(atten_out))
h = F.dropout(h, self.drop_prob_lm, self.training)
return h
class AdaAttCore(nn.Module):
def __init__(self, opt, use_maxout=False):
super(AdaAttCore, self).__init__()
self.lstm = AdaAtt_lstm(opt, use_maxout)
self.attention = AdaAtt_attention(opt)
def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
h_out, p_out, state = self.lstm(xt, fc_feats, state)
atten_out = self.attention(h_out, p_out, att_feats, p_att_feats, att_masks)
return atten_out, state
class UpDownCore(nn.Module):
def __init__(self, opt, use_maxout=False):
super(UpDownCore, self).__init__()
self.drop_prob_lm = opt.drop_prob_lm
self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1
self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v
self.attention = Attention(opt)
def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
prev_h = state[0][-1]
att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1)
h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0]))
att = self.attention(h_att, att_feats, p_att_feats, att_masks)
lang_lstm_input = torch.cat([att, h_att], 1)
# lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ?????
h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1]))
output = F.dropout(h_lang, self.drop_prob_lm, self.training)
state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang]))
return output, state
############################################################################
# Notice:
# StackAtt and DenseAtt are models that I randomly designed.
# They are not related to any paper.
############################################################################
from .FCModel import LSTMCore
class StackAttCore(nn.Module):
def __init__(self, opt, use_maxout=False):
super(StackAttCore, self).__init__()
self.drop_prob_lm = opt.drop_prob_lm
# self.att0 = Attention(opt)
self.att1 = Attention(opt)
self.att2 = Attention(opt)
opt_input_encoding_size = opt.input_encoding_size
opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size
self.lstm0 = LSTMCore(opt) # att_feat + word_embedding
opt.input_encoding_size = opt.rnn_size * 2
self.lstm1 = LSTMCore(opt)
self.lstm2 = LSTMCore(opt)
opt.input_encoding_size = opt_input_encoding_size
# self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size)
self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size)
def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
# att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks)
h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]])
att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks)
h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]])
att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks)
h_2, state_2 = self.lstm2(torch.cat([h_1,att_res_2],1), [state[0][2:3], state[1][2:3]])
return h_2, [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)]
class DenseAttCore(nn.Module):
def __init__(self, opt, use_maxout=False):
super(DenseAttCore, self).__init__()
self.drop_prob_lm = opt.drop_prob_lm
# self.att0 = Attention(opt)
self.att1 = Attention(opt)
self.att2 = Attention(opt)
opt_input_encoding_size = opt.input_encoding_size
opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size
self.lstm0 = LSTMCore(opt) # att_feat + word_embedding
opt.input_encoding_size = opt.rnn_size * 2
self.lstm1 = LSTMCore(opt)
self.lstm2 = LSTMCore(opt)
opt.input_encoding_size = opt_input_encoding_size
# self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size)
self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size)
# fuse h_0 and h_1
self.fusion1 = nn.Sequential(nn.Linear(opt.rnn_size*2, opt.rnn_size),
nn.ReLU(),
nn.Dropout(opt.drop_prob_lm))
# fuse h_0, h_1 and h_2
self.fusion2 = nn.Sequential(nn.Linear(opt.rnn_size*3, opt.rnn_size),
nn.ReLU(),
nn.Dropout(opt.drop_prob_lm))
def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
# att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks)
h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]])
att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks)
h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]])
att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks)
h_2, state_2 = self.lstm2(torch.cat([self.fusion1(torch.cat([h_0, h_1], 1)),att_res_2],1), [state[0][2:3], state[1][2:3]])
return self.fusion2(torch.cat([h_0, h_1, h_2], 1)), [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)]
class Attention(nn.Module):
def __init__(self, opt):
super(Attention, self).__init__()
self.rnn_size = opt.rnn_size
self.att_hid_size = opt.att_hid_size
self.h2att = nn.Linear(self.rnn_size, self.att_hid_size)
self.alpha_net = nn.Linear(self.att_hid_size, 1)
def forward(self, h, att_feats, p_att_feats, att_masks=None):
# The p_att_feats here is already projected
att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1)
att = p_att_feats.view(-1, att_size, self.att_hid_size)
att_h = self.h2att(h) # batch * att_hid_size
att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size
dot = att + att_h # batch * att_size * att_hid_size
dot = torch.tanh(dot) # batch * att_size * att_hid_size
dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size
dot = self.alpha_net(dot) # (batch * att_size) * 1
dot = dot.view(-1, att_size) # batch * att_size
weight = F.softmax(dot, dim=1) # batch * att_size
if att_masks is not None:
weight = weight * att_masks.view(-1, att_size).to(weight)
weight = weight / weight.sum(1, keepdim=True) # normalize to 1
att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size
att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size
return att_res
class Att2in2Core(nn.Module):
def __init__(self, opt):
super(Att2in2Core, self).__init__()
self.input_encoding_size = opt.input_encoding_size
#self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
#self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.fc_feat_size = opt.fc_feat_size
self.att_feat_size = opt.att_feat_size
self.att_hid_size = opt.att_hid_size
# Build a LSTM
self.a2c = nn.Linear(self.rnn_size, 2 * self.rnn_size)
self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size)
self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size)
self.dropout = nn.Dropout(self.drop_prob_lm)
self.attention = Attention(opt)
def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks)
all_input_sums = self.i2h(xt) + self.h2h(state[0][-1])
sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size)
sigmoid_chunk = torch.sigmoid(sigmoid_chunk)
in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size)
forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size)
out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size)
in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) + \
self.a2c(att_res)
in_transform = torch.max(\
in_transform.narrow(1, 0, self.rnn_size),
in_transform.narrow(1, self.rnn_size, self.rnn_size))
next_c = forget_gate * state[1][-1] + in_gate * in_transform
next_h = out_gate * torch.tanh(next_c)
output = self.dropout(next_h)
state = (next_h.unsqueeze(0), next_c.unsqueeze(0))
return output, state
class Att2inCore(Att2in2Core):
def __init__(self, opt):
super(Att2inCore, self).__init__(opt)
del self.a2c
self.a2c = nn.Linear(self.att_feat_size, 2 * self.rnn_size)
"""
Note this is my attempt to replicate att2all model in self-critical paper.
However, this is not a correct replication actually. Will fix it.
"""
class Att2all2Core(nn.Module):
def __init__(self, opt):
super(Att2all2Core, self).__init__()
self.input_encoding_size = opt.input_encoding_size
#self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
#self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.fc_feat_size = opt.fc_feat_size
self.att_feat_size = opt.att_feat_size
self.att_hid_size = opt.att_hid_size
# Build a LSTM
self.a2h = nn.Linear(self.rnn_size, 5 * self.rnn_size)
self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size)
self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size)
self.dropout = nn.Dropout(self.drop_prob_lm)
self.attention = Attention(opt)
def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks)
all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) + self.a2h(att_res)
sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size)
sigmoid_chunk = torch.sigmoid(sigmoid_chunk)
in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size)
forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size)
out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size)
in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size)
in_transform = torch.max(\
in_transform.narrow(1, 0, self.rnn_size),
in_transform.narrow(1, self.rnn_size, self.rnn_size))
next_c = forget_gate * state[1][-1] + in_gate * in_transform
next_h = out_gate * torch.tanh(next_c)
output = self.dropout(next_h)
state = (next_h.unsqueeze(0), next_c.unsqueeze(0))
return output, state
class AdaAttModel(AttModel):
def __init__(self, opt):
super(AdaAttModel, self).__init__(opt)
self.core = AdaAttCore(opt)
# AdaAtt with maxout lstm
class AdaAttMOModel(AttModel):
def __init__(self, opt):
super(AdaAttMOModel, self).__init__(opt)
self.core = AdaAttCore(opt, True)
class Att2in2Model(AttModel):
def __init__(self, opt):
super(Att2in2Model, self).__init__(opt)
self.core = Att2in2Core(opt)
delattr(self, 'fc_embed')
self.fc_embed = lambda x : x
class Att2all2Model(AttModel):
def __init__(self, opt):
super(Att2all2Model, self).__init__(opt)
self.core = Att2all2Core(opt)
delattr(self, 'fc_embed')
self.fc_embed = lambda x : x
class UpDownModel(AttModel):
def __init__(self, opt):
super(UpDownModel, self).__init__(opt)
self.num_layers = 2
self.core = UpDownCore(opt)
class StackAttModel(AttModel):
def __init__(self, opt):
super(StackAttModel, self).__init__(opt)
self.num_layers = 3
self.core = StackAttCore(opt)
class DenseAttModel(AttModel):
def __init__(self, opt):
super(DenseAttModel, self).__init__(opt)
self.num_layers = 3
self.core = DenseAttCore(opt)
class Att2inModel(AttModel):
def __init__(self, opt):
super(Att2inModel, self).__init__(opt)
del self.embed, self.fc_embed, self.att_embed
self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
self.fc_embed = self.att_embed = lambda x: x
del self.ctx2att
self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size)
self.core = Att2inCore(opt)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.embed.weight.data.uniform_(-initrange, initrange)
self.logit.bias.data.fill_(0)
self.logit.weight.data.uniform_(-initrange, initrange)
class NewFCModel(AttModel):
def __init__(self, opt):
super(NewFCModel, self).__init__(opt)
self.fc_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size)
self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
self._core = LSTMCore(opt)
delattr(self, 'att_embed')
self.att_embed = lambda x : x
delattr(self, 'ctx2att')
self.ctx2att = lambda x: x
def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks):
# Step 0, feed the input image
# if (self.training and state[0].is_leaf) or \
# (not self.training and state[0].sum() == 0):
# _, state = self._core(fc_feats, state)
# three cases
# normal mle training
# Sample
# beam search (diverse beam search)
# fixed captioning module.
is_first_step = (state[0]==0).all(2).all(0) # size: B
if is_first_step.all():
_, state = self._core(fc_feats, state)
elif is_first_step.any():
# This is mostly for diverse beam search I think
new_state = [torch.zeros_like(_) for _ in state]
new_state[0][:, ~is_first_step] = state[0][:, ~is_first_step]
new_state[1][:, ~is_first_step] = state[1][:, ~is_first_step]
_, state = self._core(fc_feats, state)
new_state[0][:, is_first_step] = state[0][:, is_first_step]
new_state[1][:, is_first_step] = state[1][:, is_first_step]
state = new_state
# if (state[0]==0).all():
# # Let's forget about diverse beam search first
# _, state = self._core(fc_feats, state)
return self._core(xt, state)
def _prepare_feature(self, fc_feats, att_feats, att_masks):
fc_feats = self.fc_embed(fc_feats)
return fc_feats, att_feats, att_feats, att_masks
class LMModel(AttModel):
def __init__(self, opt):
super(LMModel, self).__init__(opt)
delattr(self, 'fc_embed')
self.fc_embed = lambda x: x.new_zeros(x.shape[0], self.input_encoding_size)
self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
self._core = LSTMCore(opt)
delattr(self, 'att_embed')
self.att_embed = lambda x : x
delattr(self, 'ctx2att')
self.ctx2att = lambda x: x
def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks):
if (state[0]==0).all():
# Let's forget about diverse beam search first
_, state = self._core(fc_feats, state)
return self._core(xt, state)
def _prepare_feature(self, fc_feats, att_feats, att_masks):
fc_feats = self.fc_embed(fc_feats)
return fc_feats, None, None, None