Spaces:
Sleeping
Sleeping
# This file contains ShowAttendTell and AllImg model | |
# ShowAttendTell is from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention | |
# https://arxiv.org/abs/1502.03044 | |
# AllImg is a model where | |
# img feature is concatenated with word embedding at every time step as the input of lstm | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import * | |
# import misc.utils as utils | |
# import utils as utils | |
from . import utils | |
from .CaptionModel import CaptionModel | |
class OldModel(CaptionModel): | |
def __init__(self, opt): | |
super(OldModel, self).__init__() | |
self.vocab_size = opt.vocab_size | |
self.input_encoding_size = opt.input_encoding_size | |
self.rnn_type = opt.rnn_type | |
self.rnn_size = opt.rnn_size | |
self.num_layers = opt.num_layers | |
self.drop_prob_lm = opt.drop_prob_lm | |
self.seq_length = opt.seq_length | |
self.fc_feat_size = opt.fc_feat_size | |
self.att_feat_size = opt.att_feat_size | |
self.ss_prob = 0.0 # Schedule sampling probability | |
self.linear = nn.Linear(self.fc_feat_size, self.num_layers * self.rnn_size) # feature to rnn_size | |
self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) | |
self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) | |
self.dropout = nn.Dropout(self.drop_prob_lm) | |
self.init_weights() | |
def init_weights(self): | |
initrange = 0.1 | |
self.embed.weight.data.uniform_(-initrange, initrange) | |
self.logit.bias.data.fill_(0) | |
self.logit.weight.data.uniform_(-initrange, initrange) | |
def init_hidden(self, fc_feats): | |
image_map = self.linear(fc_feats).view(-1, self.num_layers, self.rnn_size).transpose(0, 1) | |
if self.rnn_type == 'lstm': | |
return (image_map, image_map) | |
else: | |
return image_map | |
def forward(self, fc_feats, att_feats, seq): | |
batch_size = fc_feats.size(0) | |
state = self.init_hidden(fc_feats) | |
outputs = [] | |
for i in range(seq.size(1) - 1): | |
if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample | |
sample_prob = fc_feats.data.new(batch_size).uniform_(0, 1) | |
sample_mask = sample_prob < self.ss_prob | |
if sample_mask.sum() == 0: | |
it = seq[:, i].clone() | |
else: | |
sample_ind = sample_mask.nonzero().view(-1) | |
it = seq[:, i].data.clone() | |
# prob_prev = torch.exp(outputs[-1].data.index_select(0, sample_ind)) # fetch prev distribution: shape Nx(M+1) | |
# it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1)) | |
prob_prev = torch.exp(outputs[-1].data) # fetch prev distribution: shape Nx(M+1) | |
it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) | |
it = Variable(it, requires_grad=False) | |
else: | |
it = seq[:, i].clone() | |
# break if all the sequences end | |
if i >= 1 and seq[:, i].data.sum() == 0: | |
break | |
xt = self.embed(it) | |
output, state = self.core(xt, fc_feats, att_feats, state) | |
output = F.log_softmax(self.logit(self.dropout(output))) | |
outputs.append(output) | |
return torch.cat([_.unsqueeze(1) for _ in outputs], 1) | |
def get_logprobs_state(self, it, tmp_fc_feats, tmp_att_feats, state): | |
# 'it' is Variable contraining a word index | |
xt = self.embed(it) | |
output, state = self.core(xt, tmp_fc_feats, tmp_att_feats, state) | |
logprobs = F.log_softmax(self.logit(self.dropout(output))) | |
return logprobs, state | |
def sample_beam(self, fc_feats, att_feats, opt={}): | |
beam_size = opt.get('beam_size', 10) | |
batch_size = fc_feats.size(0) | |
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' | |
seq = torch.LongTensor(self.seq_length, batch_size).zero_() | |
seqLogprobs = torch.FloatTensor(self.seq_length, batch_size) | |
# lets process every image independently for now, for simplicity | |
self.done_beams = [[] for _ in range(batch_size)] | |
for k in range(batch_size): | |
tmp_fc_feats = fc_feats[k:k + 1].expand(beam_size, self.fc_feat_size) | |
tmp_att_feats = att_feats[k:k + 1].expand(*((beam_size,) + att_feats.size()[1:])).contiguous() | |
state = self.init_hidden(tmp_fc_feats) | |
beam_seq = torch.LongTensor(self.seq_length, beam_size).zero_() | |
beam_seq_logprobs = torch.FloatTensor(self.seq_length, beam_size).zero_() | |
beam_logprobs_sum = torch.zeros(beam_size) # running sum of logprobs for each beam | |
done_beams = [] | |
for t in range(1): | |
if t == 0: # input <bos> | |
it = fc_feats.data.new(beam_size).long().zero_() | |
xt = self.embed(Variable(it, requires_grad=False)) | |
output, state = self.core(xt, tmp_fc_feats, tmp_att_feats, state) | |
logprobs = F.log_softmax(self.logit(self.dropout(output))) | |
self.done_beams[k] = self.beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, opt=opt) | |
seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score | |
seqLogprobs[:, k] = self.done_beams[k][0]['logps'] | |
# return the samples and their log likelihoods | |
return seq.transpose(0, 1), seqLogprobs.transpose(0, 1) | |
def sample(self, fc_feats, att_feats, opt={}): | |
sample_max = opt.get('sample_max', 1) | |
beam_size = opt.get('beam_size', 1) | |
temperature = opt.get('temperature', 1.0) | |
if beam_size > 1: | |
return self.sample_beam(fc_feats, att_feats, opt) | |
batch_size = fc_feats.size(0) | |
state = self.init_hidden(fc_feats) | |
seq = [] | |
seqLogprobs = [] | |
for t in range(self.seq_length + 1): | |
if t == 0: # input <bos> | |
it = fc_feats.data.new(batch_size).long().zero_() | |
elif sample_max: | |
sampleLogprobs, it = torch.max(logprobs.data, 1) | |
it = it.view(-1).long() | |
else: | |
if temperature == 1.0: | |
prob_prev = torch.exp(logprobs.data).cpu() # fetch prev distribution: shape Nx(M+1) | |
else: | |
# scale logprobs by temperature | |
prob_prev = torch.exp(torch.div(logprobs.data, temperature)).cpu() | |
it = torch.multinomial(prob_prev, 1).cuda() | |
sampleLogprobs = logprobs.gather(1, Variable(it, | |
requires_grad=False)) # gather the logprobs at sampled positions | |
it = it.view(-1).long() # and flatten indices for downstream processing | |
xt = self.embed(Variable(it, requires_grad=False)) | |
if t >= 1: | |
# stop when all finished | |
if t == 1: | |
unfinished = it > 0 | |
else: | |
unfinished = unfinished * (it > 0) | |
if unfinished.sum() == 0: | |
break | |
it = it * unfinished.type_as(it) | |
seq.append(it) # seq[t] the input of t+2 time step | |
seqLogprobs.append(sampleLogprobs.view(-1)) | |
output, state = self.core(xt, fc_feats, att_feats, state) | |
logprobs = F.log_softmax(self.logit(self.dropout(output)), -1) | |
return torch.cat([_.unsqueeze(1) for _ in seq], 1), torch.cat([_.unsqueeze(1) for _ in seqLogprobs], 1) | |
class ShowAttendTellCore(nn.Module): | |
def __init__(self, opt): | |
super(ShowAttendTellCore, self).__init__() | |
self.input_encoding_size = opt.input_encoding_size | |
self.rnn_type = opt.rnn_type | |
self.rnn_size = opt.rnn_size | |
self.num_layers = opt.num_layers | |
self.drop_prob_lm = opt.drop_prob_lm | |
self.fc_feat_size = opt.fc_feat_size | |
self.att_feat_size = opt.att_feat_size | |
self.att_hid_size = opt.att_hid_size | |
self.rnn = getattr(nn, self.rnn_type.upper())(self.input_encoding_size + self.att_feat_size, | |
self.rnn_size, self.num_layers, bias=False, | |
dropout=self.drop_prob_lm) | |
if self.att_hid_size > 0: | |
self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size) | |
self.h2att = nn.Linear(self.rnn_size, self.att_hid_size) | |
self.alpha_net = nn.Linear(self.att_hid_size, 1) | |
else: | |
self.ctx2att = nn.Linear(self.att_feat_size, 1) | |
self.h2att = nn.Linear(self.rnn_size, 1) | |
def forward(self, xt, fc_feats, att_feats, state): | |
att_size = att_feats.numel() // att_feats.size(0) // self.att_feat_size | |
att = att_feats.view(-1, self.att_feat_size) | |
if self.att_hid_size > 0: | |
att = self.ctx2att(att) # (batch * att_size) * att_hid_size | |
att = att.view(-1, att_size, self.att_hid_size) # batch * att_size * att_hid_size | |
att_h = self.h2att(state[0][-1]) # batch * att_hid_size | |
att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size | |
dot = att + att_h # batch * att_size * att_hid_size | |
dot = torch.tanh(dot) # batch * att_size * att_hid_size | |
dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size | |
dot = self.alpha_net(dot) # (batch * att_size) * 1 | |
dot = dot.view(-1, att_size) # batch * att_size | |
else: | |
att = self.ctx2att(att)(att) # (batch * att_size) * 1 | |
att = att.view(-1, att_size) # batch * att_size | |
att_h = self.h2att(state[0][-1]) # batch * 1 | |
att_h = att_h.expand_as(att) # batch * att_size | |
dot = att_h + att # batch * att_size | |
weight = F.softmax(dot, -1) | |
att_feats_ = att_feats.view(-1, att_size, self.att_feat_size) # batch * att_size * att_feat_size | |
att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size | |
output, state = self.rnn(torch.cat([xt, att_res], 1).unsqueeze(0), state) | |
return output.squeeze(0), state | |
class AllImgCore(nn.Module): | |
def __init__(self, opt): | |
super(AllImgCore, self).__init__() | |
self.input_encoding_size = opt.input_encoding_size | |
self.rnn_type = opt.rnn_type | |
self.rnn_size = opt.rnn_size | |
self.num_layers = opt.num_layers | |
self.drop_prob_lm = opt.drop_prob_lm | |
self.fc_feat_size = opt.fc_feat_size | |
self.rnn = getattr(nn, self.rnn_type.upper())(self.input_encoding_size + self.fc_feat_size, | |
self.rnn_size, self.num_layers, bias=False, | |
dropout=self.drop_prob_lm) | |
def forward(self, xt, fc_feats, att_feats, state): | |
output, state = self.rnn(torch.cat([xt, fc_feats], 1).unsqueeze(0), state) | |
return output.squeeze(0), state | |
class ShowAttendTellModel(OldModel): | |
def __init__(self, opt): | |
super(ShowAttendTellModel, self).__init__(opt) | |
self.core = ShowAttendTellCore(opt) | |
class AllImgModel(OldModel): | |
def __init__(self, opt): | |
super(AllImgModel, self).__init__(opt) | |
self.core = AllImgCore(opt) | |