yashonwu
add captioning
9bf9e42
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import json
from json import encoder
import random
import string
import time
import os
import sys
from . import misc as utils
# sys.path.insert(0, os.getcwd())
# sys.path.append("coco-caption")
# load coco-caption if available
from coco_caption.pycocotools.coco import COCO
from coco_caption.pycocoevalcap.eval import COCOEvalCap
# try:
# # sys.path.append("coco-caption")
# # from pycocotools.coco import COCO
# # from pycocoevalcap.eval import COCOEvalCap
# from coco_caption.pycocotools.coco import COCO
# from coco_caption.pycocoevalcap.eval import COCOEvalCap
# except:
# print('Warning: coco-caption not available')
bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am']
bad_endings += ['UNK', 'has', 'and', 'more']
def count_bad(sen):
sen = sen.split(' ')
if sen[-1] in bad_endings:
return 1
else:
return 0
def getCOCO(dataset):
if 'coco' in dataset:
annFile = 'coco-caption/annotations/captions_val2014.json'
elif 'flickr30k' in dataset or 'f30k' in dataset:
annFile = 'data/f30k_captions4eval.json'
# elif 'relative' in dataset:
# annFile = 'data/dress/features_simulator/caption_relative.json'
elif 'dress' in dataset:
annFile = 'data/dress/features_simulator/caption_relative.json'
elif 'shirt' in dataset:
annFile = 'data/shirt/features_simulator/caption_relative.json'
elif 'toptee' in dataset:
annFile = 'data/toptee/features_simulator/caption_relative.json'
elif 'fashion-gen' in dataset:
annFile = 'data/fashion-gen/features_simulator/caption_direct.json'
elif 'shoe' in dataset:
annFile = 'data/shoe/features_simulator/caption_relative.json'
return COCO(annFile)
def language_eval(dataset, preds, preds_n, eval_kwargs, split):
model_id = eval_kwargs['id']
eval_oracle = eval_kwargs.get('eval_oracle', 0)
# create output dictionary
out = {}
if len(preds_n) > 0:
# vocab size and novel sentences
if 'coco' in dataset:
dataset_file = 'data/dataset_coco.json'
elif 'flickr30k' in dataset or 'f30k' in dataset:
dataset_file = 'data/dataset_flickr30k.json'
# elif 'relative' in dataset:
# dataset_file = 'data/dress/features_simulator/caption_relative.json'
elif 'dress' in dataset:
annFile = 'data/dress/features_simulator/caption_relative.json'
elif 'shirt' in dataset:
annFile = 'data/shirt/features_simulator/caption_relative.json'
elif 'toptee' in dataset:
annFile = 'data/toptee/features_simulator/caption_relative.json'
elif 'fashion-gen' in dataset:
annFile = 'data/fashion-gen/features_simulator/caption_direct.json'
elif 'shoe' in dataset:
annFile = 'data/shoe/features_simulator/caption_relative.json'
training_sentences = set([' '.join(__['tokens']) for _ in json.load(open(dataset_file))['images'] if not _['split'] in ['val', 'test'] for __ in _['sentences']])
generated_sentences = set([_['caption'] for _ in preds_n])
novels = generated_sentences - training_sentences
out['novel_sentences'] = float(len(novels)) / len(preds_n)
tmp = [_.split() for _ in generated_sentences]
words = []
for _ in tmp:
words += _
out['vocab_size'] = len(set(words))
# encoder.FLOAT_REPR = lambda o: format(o, '.3f')
# cache_path = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '.json')\
cache_path = os.path.join('results/log_'+eval_kwargs['topic']+'_'+model_id+'/eval_results_'+eval_kwargs['topic']+'/', '.cache_'+ model_id + '_' + split + '.json')
coco = getCOCO(dataset)
valids = coco.getImgIds()
# filter results to only those in MSCOCO validation set
preds_filt = [p for p in preds if p['image_id'] in valids]
mean_perplexity = sum([_['perplexity'] for _ in preds_filt]) / len(preds_filt)
mean_entropy = sum([_['entropy'] for _ in preds_filt]) / len(preds_filt)
print('using %d/%d predictions' % (len(preds_filt), len(preds)))
json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...
cocoRes = coco.loadRes(cache_path)
cocoEval = COCOEvalCap(coco, cocoRes)
cocoEval.params['image_id'] = cocoRes.getImgIds()
cocoEval.evaluate()
for metric, score in cocoEval.eval.items():
out[metric] = score
# Add mean perplexity
out['perplexity'] = mean_perplexity
out['entropy'] = mean_entropy
imgToEval = cocoEval.imgToEval
for k in list(imgToEval.values())[0]['SPICE'].keys():
if k != 'All':
out['SPICE_'+k] = np.array([v['SPICE'][k]['f'] for v in imgToEval.values()])
out['SPICE_'+k] = (out['SPICE_'+k][out['SPICE_'+k]==out['SPICE_'+k]]).mean()
for p in preds_filt:
image_id, caption = p['image_id'], p['caption']
imgToEval[image_id]['caption'] = caption
if len(preds_n) > 0:
from . import eval_multi
# cache_path_n = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '_n.json')
cache_path_n = os.path.join('results/log_'+eval_kwargs['topic']+'_'+model_id+'/eval_results_'+eval_kwargs['topic']+'/', '.cache_'+ model_id + '_' + split + '_n.json')
allspice = eval_multi.eval_allspice(dataset, preds_n, model_id, split)
out.update(allspice['overall'])
div_stats = eval_multi.eval_div_stats(dataset, preds_n, model_id, split)
out.update(div_stats['overall'])
if eval_oracle:
oracle = eval_multi.eval_oracle(dataset, preds_n, model_id, split)
out.update(oracle['overall'])
else:
oracle = None
self_cider = eval_multi.eval_self_cider(dataset, preds_n, model_id, split)
out.update(self_cider['overall'])
with open(cache_path_n, 'w') as outfile:
json.dump({'allspice': allspice, 'div_stats': div_stats, 'oracle': oracle, 'self_cider': self_cider}, outfile)
out['bad_count_rate'] = sum([count_bad(_['caption']) for _ in preds_filt]) / float(len(preds_filt))
# outfile_path = os.path.join('eval_results/', model_id + '_' + split + '.json')
outfile_path = os.path.join('results/log_'+eval_kwargs['topic']+'_'+model_id+'/eval_results_'+eval_kwargs['topic']+'/', model_id + '_' + split + '.json')
with open(outfile_path, 'w') as outfile:
json.dump({'overall': out, 'imgToEval': imgToEval}, outfile)
return out
def eval_split(model, crit, loader, eval_kwargs={}):
verbose = eval_kwargs.get('verbose', True)
verbose_beam = eval_kwargs.get('verbose_beam', 0)
verbose_loss = eval_kwargs.get('verbose_loss', 1)
num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1))
split = eval_kwargs.get('split', 'val')
lang_eval = eval_kwargs.get('language_eval', 0)
dataset = eval_kwargs.get('dataset', 'coco')
beam_size = eval_kwargs.get('beam_size', 1)
sample_n = eval_kwargs.get('sample_n', 1)
remove_bad_endings = eval_kwargs.get('remove_bad_endings', 1)
os.environ["REMOVE_BAD_ENDINGS"] = str(remove_bad_endings) # Use this nasty way to make other code clean since it's a global configuration
device = eval_kwargs.get('device', 'cuda')
# Make sure in the evaluation mode
model.eval()
loader.reset_iterator(split)
n = 0
loss = 0
loss_sum = 0
loss_evals = 1e-8
predictions = []
n_predictions = [] # when sample_n > 1
while True:
data = loader.get_batch(split)
n = n + len(data['infos'])
tmp = [data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks']]
tmp = [_.to(device) if _ is not None else _ for _ in tmp]
fc_feats, att_feats, labels, masks, att_masks = tmp
if labels is not None and verbose_loss:
# forward the model to get loss
with torch.no_grad():
loss = crit(model(fc_feats, att_feats, labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:]).item()
loss_sum = loss_sum + loss
loss_evals = loss_evals + 1
# forward the model to also get generated samples for each image
with torch.no_grad():
tmp_eval_kwargs = eval_kwargs.copy()
tmp_eval_kwargs.update({'sample_n': 1})
seq, seq_logprobs = model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
seq = seq.data
entropy = - (F.softmax(seq_logprobs, dim=2) * seq_logprobs).sum(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1)
perplexity = - seq_logprobs.gather(2, seq.unsqueeze(2)).squeeze(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1)
# Print beam search
if beam_size > 1 and verbose_beam:
for i in range(fc_feats.shape[0]):
print('\n'.join([utils.decode_sequence(model.vocab, _['seq'].unsqueeze(0))[0] for _ in model.done_beams[i]]))
print('--' * 10)
sents = utils.decode_sequence(model.vocab, seq)
for k, sent in enumerate(sents):
entry = {'image_id': data['infos'][k]['id'], 'caption': sent, 'perplexity': perplexity[k].item(), 'entropy': entropy[k].item()}
if eval_kwargs.get('dump_path', 0) == 1:
entry['file_name'] = data['infos'][k]['file_path']
predictions.append(entry)
if eval_kwargs.get('dump_images', 0) == 1:
# dump the raw image to vis/ folder
cmd = 'cp "' + os.path.join(eval_kwargs['image_root'], data['infos'][k]['file_path']) + '" vis/imgs/img' + str(len(predictions)) + '.jpg' # bit gross
print(cmd)
os.system(cmd)
if verbose:
print('image %s: %s' %(entry['image_id'], entry['caption']))
if sample_n > 1:
eval_split_n(model, n_predictions, [fc_feats, att_feats, att_masks, data], eval_kwargs)
# ix0 = data['bounds']['it_pos_now']
ix1 = data['bounds']['it_max']
if num_images != -1:
ix1 = min(ix1, num_images)
else:
num_images = ix1
for i in range(n - ix1):
predictions.pop()
if verbose:
print('evaluating validation preformance... %d/%d (%f)' %(n, ix1, loss))
if num_images >= 0 and n >= num_images:
break
lang_stats = None
if len(n_predictions) > 0 and 'perplexity' in n_predictions[0]:
n_predictions = sorted(n_predictions, key=lambda x: x['perplexity'])
# if not os.path.isdir('eval_results'):
# os.mkdir('eval_results')
if not os.path.isdir('results/log_'+eval_kwargs['topic']+'_'+eval_kwargs['id']+'/eval_results_'+eval_kwargs['topic']):
os.mkdir('results/log_'+eval_kwargs['topic']+'_'+eval_kwargs['id']+'/eval_results_'+eval_kwargs['topic'])
# torch.save((predictions, n_predictions), os.path.join('eval_results/', '.saved_pred_'+ eval_kwargs['id'] + '_' + split + '.pth'))
torch.save((predictions, n_predictions), os.path.join('results/log_'+eval_kwargs['topic']+'_'+eval_kwargs['id']+'/eval_results_'+eval_kwargs['topic']+'/', '.saved_pred_'+ eval_kwargs['id'] + '_' + split + '.pth'))
if lang_eval == 1:
lang_stats = language_eval(dataset, predictions, n_predictions, eval_kwargs, split)
# Switch back to training mode
model.train()
return loss_sum/loss_evals, predictions, lang_stats
# Only run when sample_n > 0
def eval_split_n(model, n_predictions, input_data, eval_kwargs={}):
verbose = eval_kwargs.get('verbose', True)
beam_size = eval_kwargs.get('beam_size', 1)
sample_n = eval_kwargs.get('sample_n', 1)
sample_n_method = eval_kwargs.get('sample_n_method', 'sample')
fc_feats, att_feats, att_masks, data = input_data
tmp_eval_kwargs = eval_kwargs.copy()
if sample_n_method == 'bs':
# case 1 sample_n == beam size
tmp_eval_kwargs.update({'sample_n': 1, 'beam_size': sample_n, 'group_size': 1}) # randomness from softmax
with torch.no_grad():
model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
for k in range(fc_feats.shape[0]):
_sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(sample_n)]))
for sent in _sents:
entry = {'image_id': data['infos'][k]['id'], 'caption': sent}
n_predictions.append(entry)
# case 2 sample / gumbel / topk sampling/ nucleus sampling
elif sample_n_method == 'sample' or \
sample_n_method == 'gumbel' or \
sample_n_method.startswith('top'):
tmp_eval_kwargs.update({'sample_n': sample_n, 'sample_method': sample_n_method, 'beam_size': 1}) # randomness from sample
with torch.no_grad():
_seq, _sampleLogprobs = model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
_sents = utils.decode_sequence(model.vocab, _seq)
_perplexity = - _sampleLogprobs.gather(2, _seq.unsqueeze(2)).squeeze(2).sum(1) / ((_seq>0).to(_sampleLogprobs).sum(1)+1)
for k, sent in enumerate(_sents):
entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent, 'perplexity': _perplexity[k].item()}
n_predictions.append(entry)
elif sample_n_method == 'dbs':
# Use diverse beam search
tmp_eval_kwargs.update({'beam_size': sample_n * beam_size, 'group_size': sample_n}) # randomness from softmax
with torch.no_grad():
model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
for k in range(loader.batch_size):
_sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(0, sample_n*beam_size, beam_size)]))
for sent in _sents:
entry = {'image_id': data['infos'][k]['id'], 'caption': sent}
n_predictions.append(entry)
else:
tmp_eval_kwargs.update({'sample_method': sample_n_method[1:], 'group_size': sample_n, 'beam_size':1}) # randomness from softmax
with torch.no_grad():
_seq, _sampleLogprobs = model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
_sents = utils.decode_sequence(model.vocab, _seq)
for k, sent in enumerate(_sents):
entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent}
n_predictions.append(entry)
if verbose:
for entry in sorted(n_predictions[-fc_feats.shape[0] * sample_n:], key=lambda x: x['image_id']):
print('image %s: %s' %(entry['image_id'], entry['caption']))