Spaces:
No application file
No application file
Upload 2 files
Browse files- Home.py +62 -0
- prediction.py +28 -0
Home.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
import streamlit as st
|
3 |
+
from prediction import predict_single_image
|
4 |
+
|
5 |
+
knn_model = joblib.load('models/knn_model.joblib')
|
6 |
+
svm_model = joblib.load('models/svm_model.joblib')
|
7 |
+
random_forest_model = joblib.load('models/random_forest_model.joblib')
|
8 |
+
|
9 |
+
def show_error_popup(message):
|
10 |
+
st.error(message, icon="🚨")
|
11 |
+
|
12 |
+
st.set_page_config(layout="wide")
|
13 |
+
|
14 |
+
st.title('CASIA PALMPRINT DATASET')
|
15 |
+
st.markdown('By Yash Patel')
|
16 |
+
|
17 |
+
st.header('Add Palmprint Image')
|
18 |
+
|
19 |
+
uploaded_file = st.file_uploader("Choose an image", type=["jpg", "png", "jpeg"])
|
20 |
+
|
21 |
+
st.header("Available Models")
|
22 |
+
option = st.selectbox(
|
23 |
+
"Available Models",
|
24 |
+
("SVM", "KNN","Random Forest"),
|
25 |
+
)
|
26 |
+
|
27 |
+
predicted_label =""
|
28 |
+
col1, col2= st.columns(2)
|
29 |
+
|
30 |
+
if uploaded_file is not None:
|
31 |
+
with col1:
|
32 |
+
image_data = uploaded_file.read()
|
33 |
+
st.image(image_data, caption="Uploaded Image")
|
34 |
+
with col2:
|
35 |
+
if option=="SVM":
|
36 |
+
predicted_label = predict_single_image(svm_model,image_data)
|
37 |
+
elif option=="KNN":
|
38 |
+
predicted_label = predict_single_image(knn_model, image_data)
|
39 |
+
elif option=="Random Forest":
|
40 |
+
predicted_label = predict_single_image(random_forest_model, image_data)
|
41 |
+
else:
|
42 |
+
p = "Other Models are still under training due to overfitting"
|
43 |
+
|
44 |
+
print(predicted_label)
|
45 |
+
|
46 |
+
st.markdown("""
|
47 |
+
<style>
|
48 |
+
.big-font {
|
49 |
+
display: flex;
|
50 |
+
align-items:center;
|
51 |
+
justify-content: center;
|
52 |
+
font-size:50px !important;
|
53 |
+
color:green;
|
54 |
+
height: 50vh;
|
55 |
+
}
|
56 |
+
</style>
|
57 |
+
""", unsafe_allow_html=True)
|
58 |
+
|
59 |
+
st.markdown(f'<div class="big-font">{predicted_label}</div>', unsafe_allow_html=True)
|
60 |
+
|
61 |
+
else:
|
62 |
+
show_error_popup("Please Upload Image...")
|
prediction.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
|
5 |
+
def preprocess_image(img):
|
6 |
+
"""Preprocess a single image for prediction."""
|
7 |
+
img = tf.image.decode_jpeg(img, channels=1)
|
8 |
+
img= tf.image.resize(img, (224, 224))
|
9 |
+
img_flattened = tf.reshape(img, (-1,))
|
10 |
+
|
11 |
+
# Convert to 2D array (expected input format for the model)
|
12 |
+
img_flattened = np.expand_dims(img_flattened, axis=0) # Shape: (1, features)
|
13 |
+
|
14 |
+
return img_flattened
|
15 |
+
|
16 |
+
|
17 |
+
def predict_single_image(model, image):
|
18 |
+
"""Predict the label of a single image."""
|
19 |
+
# Preprocess the image
|
20 |
+
processed_image = preprocess_image(image)
|
21 |
+
|
22 |
+
# Make prediction
|
23 |
+
prediction = model.predict(processed_image)
|
24 |
+
|
25 |
+
return prediction[0] # Return the predicted label
|
26 |
+
|
27 |
+
|
28 |
+
# Test the single image
|