Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,26 @@
|
|
1 |
import streamlit as st
|
2 |
import pickle
|
3 |
from Prediction import Prediction
|
4 |
-
from
|
5 |
-
|
6 |
|
7 |
|
8 |
# resnet_model = pickle.load(open('models/ResNet01.pkl','rb'))
|
9 |
# cnn_model = pickle.load(open('models/CNNModel2.pkl','rb'))
|
10 |
# inc_model = pickle.load(open('models/Inception01.pkl','rb'))
|
11 |
-
resnet_model = TFAutoModel.from_pretrained("yashpat85/ResNet01")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
def show_error_popup(message):
|
@@ -42,8 +54,8 @@ if uploaded_file is not None:
|
|
42 |
p = pm.predict_image(cnn_model, image_data)
|
43 |
elif option=="ResNet":
|
44 |
p = pm.predict_image(resnet_model, image_data)
|
45 |
-
elif option=="InceptionNet":
|
46 |
-
|
47 |
else:
|
48 |
p = "Other Models are still under training due to overfitting"
|
49 |
|
|
|
1 |
import streamlit as st
|
2 |
import pickle
|
3 |
from Prediction import Prediction
|
4 |
+
from huggingface_hub import hf_hub_download
|
|
|
5 |
|
6 |
|
7 |
# resnet_model = pickle.load(open('models/ResNet01.pkl','rb'))
|
8 |
# cnn_model = pickle.load(open('models/CNNModel2.pkl','rb'))
|
9 |
# inc_model = pickle.load(open('models/Inception01.pkl','rb'))
|
10 |
+
# resnet_model = TFAutoModel.from_pretrained("yashpat85/ResNet01")
|
11 |
+
|
12 |
+
REPO_ID1 = "yashpat85/ResNet01"
|
13 |
+
MODEL_DIR1 = hf_hub_download(repo_id=REPO_ID1, filename="ResNet01.pkl", repo_type="model")
|
14 |
+
|
15 |
+
# REPO_ID2= "yashpat85/Inception01"
|
16 |
+
# MODEL_DIR2 = hf_hub_download(repo_id=REPO_ID2, filename="Inception01.pkl", repo_type="model")
|
17 |
+
|
18 |
+
REPO_ID3 = "yashpat85/CNNModel2"
|
19 |
+
MODEL_DIR3 = hf_hub_download(repo_id=REPO_ID3, filename="CNNModel2.pkl", repo_type="model")
|
20 |
+
|
21 |
+
|
22 |
+
resnet_model = pickle.load(open(MODEL_DIR1,'rb'))
|
23 |
+
cnn_model = pickle.load(open(MODEL_DIR3,'rb'))
|
24 |
|
25 |
|
26 |
def show_error_popup(message):
|
|
|
54 |
p = pm.predict_image(cnn_model, image_data)
|
55 |
elif option=="ResNet":
|
56 |
p = pm.predict_image(resnet_model, image_data)
|
57 |
+
# elif option=="InceptionNet":
|
58 |
+
# p = pm.predict_image(inc_model, image_data)
|
59 |
else:
|
60 |
p = "Other Models are still under training due to overfitting"
|
61 |
|