import streamlit as st import pickle from Prediction import Prediction from transformers import TFAutoModel # resnet_model = pickle.load(open('models/ResNet01.pkl','rb')) # cnn_model = pickle.load(open('models/CNNModel2.pkl','rb')) # inc_model = pickle.load(open('models/Inception01.pkl','rb')) resnet_model = TFAutoModel.from_pretrained("yashpat85/ResNet01") def show_error_popup(message): st.error(message, icon="🚨") st.set_page_config(layout="wide") st.title('Kidney Disease Classification using CNN') st.markdown('By 22DCS079 & 22DCS085') st.header('Add Ct Scan Image') uploaded_file = st.file_uploader("Choose a ct scan image", type=["jpg", "png", "jpeg"]) st.header("Available Models") option = st.selectbox( "Available Models", ("ResNet", "CNN","InceptionNet"), ) pm = Prediction() col1, col2= st.columns(2) if uploaded_file is not None: with col1: image_data = uploaded_file.read() st.image(image_data, caption="Uploaded Image") with col2: if option=="CNN": p = pm.predict_image(cnn_model, image_data) elif option=="ResNet": p = pm.predict_image(resnet_model, image_data) elif option=="InceptionNet": p = pm.predict_image(inc_model, image_data) else: p = "Other Models are still under training due to overfitting" print(p) if p=='Normal': st.markdown(""" """, unsafe_allow_html=True) st.markdown(f'
{p}
', unsafe_allow_html=True) else: st.markdown(""" """, unsafe_allow_html=True) st.markdown(f'
{p}
', unsafe_allow_html=True) else: show_error_popup("Please Upload Image...")