yasserrmd commited on
Commit
907404f
·
verified ·
1 Parent(s): 3b9b2ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -45
app.py CHANGED
@@ -1,53 +1,79 @@
 
1
  import streamlit as st
2
  import os
3
- from openai import OpenAI
4
 
5
- # Initialize the Nvidia API client using API Key stored in Streamlit secrets
6
- client =OpenAI(
7
- base_url = "https://integrate.api.nvidia.com/v1",
8
- api_key = os.getenv("NVIDIA_API_KEY")
9
  )
10
 
11
- # Define Streamlit app layout
12
- st.title("AWS Well-Architected Review")
13
- st.write("Get recommendations for optimizing your AWS architecture.")
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  if "messages" not in st.session_state:
17
- st.session_state.messages = [
18
- {"role": "system", "content": "You are an assistant that provides recommendations based on AWS Well-Architected Review best practices. Focus on the 5 pillars: Operational Excellence, Security, Reliability, Performance Efficiency, and Cost Optimization."}
19
- ]
20
-
21
- # User input for AWS architecture description
22
- architecture_input = st.text_area("Describe your AWS architecture:")
23
-
24
- # Button to submit the input
25
- if st.button("Get Recommendations"):
26
- if architecture_input:
27
- # Add user input to the conversation
28
- st.session_state.messages.append({"role": "user", "content": architecture_input})
29
-
30
- with st.chat_message("assistant"):
31
- with st.spinner("Generating recommendations..."):
32
- # Create Nvidia completion request with conversation history
33
- stream = client.chat.completions.create(
34
- model="nvidia/llama-3.1-nemotron-70b-instruct", # Nvidia model name
35
- messages=st.session_state.messages, # Include all messages in the API call
36
- temperature=0.5,
37
- top_p=0.7,
38
- max_tokens=1024,
39
- stream=True,
40
- )
41
-
42
- response_chunks = []
43
- for chunk in stream:
44
- print('chunk-' + chunk.choices[0].delta.content)
45
- if chunk.choices[0].delta.content is not None:
46
- response_chunks.append(chunk.choices[0].delta.content)
47
- print(chunk.choices[0].delta.content)
48
- response = "".join(response_chunks)
49
-
50
- # Display the response as recommendations
51
- st.markdown(f"**Recommendations:**\n\n{response}")
52
- # Add response to conversation history
53
- st.session_state.messages.append({"role": "assistant", "content": response})
 
1
+ from openai import OpenAI # Assuming Nvidia client is available in the same library, adjust if necessary
2
  import streamlit as st
3
  import os
4
+ from datetime import datetime
5
 
6
+ # Initialize Nvidia client
7
+ client = OpenAI(
8
+ base_url="https://integrate.api.nvidia.com/v1", # Nvidia API endpoint
9
+ api_key=os.environ["NVIDIA_API_KEY"] # Nvidia API Key from Streamlit secrets
10
  )
11
 
12
+ st.title("ChatGPT-like clone with Nvidia Nemotron 70B Model")
 
 
13
 
14
+ # Sidebar with instructions and Clear Session button
15
+ with st.sidebar:
16
+ # Instruction
17
+ st.markdown("### Instructions 🤖\nThis is a basic chatbot. Ask anything, and the AI will try to help you! The app is supported by Yiqiao Yin.")
18
+
19
+ # Add a section to ask the user for the response length
20
+ st.markdown("#### Select the desired length of the AI response:")
21
+ response_length = st.radio(
22
+ "How detailed do you want the response to be?",
23
+ ('Efficient', 'Medium', 'Academic')
24
+ )
25
+
26
+ # Set max_tokens based on user selection
27
+ if response_length == 'Efficient':
28
+ max_tokens = 100
29
+ elif response_length == 'Medium':
30
+ max_tokens = 600
31
+ else: # 'Academic'
32
+ max_tokens = 1024
33
+
34
+ # Clear
35
+ if st.button("Clear Session"):
36
+ st.session_state.clear()
37
+ st.write(f"Copyright © 2010-{datetime.now().year} Present Yiqiao Yin")
38
+
39
+ # Initialize session state variables if not already present
40
+ if "nvidia_model" not in st.session_state:
41
+ st.session_state["nvidia_model"] = "nvidia/llama-3.1-nemotron-70b-instruct"
42
 
43
  if "messages" not in st.session_state:
44
+ # Adding the initial system message
45
+ st.session_state.messages = [{"role": "system", "content": "You are a helpful assistant."}]
46
+
47
+ # Render the chat history
48
+ for message in st.session_state.messages:
49
+ with st.chat_message(message["role"]):
50
+ st.markdown(message["content"])
51
+
52
+ # Get new user input
53
+ if prompt := st.chat_input("What is up?"):
54
+ # Add user message to the session state
55
+ st.session_state.messages.append({"role": "user", "content": prompt})
56
+ with st.chat_message("user"):
57
+ st.markdown(prompt)
58
+
59
+ # Display assistant's message while waiting for the response
60
+ with st.chat_message("assistant"):
61
+ with st.spinner("The assistant is thinking... Please wait."):
62
+ # Create Nvidia completion request with full conversation history
63
+ stream = client.chat.completions.create(
64
+ model=st.session_state["nvidia_model"],
65
+ messages=st.session_state.messages, # Include all previous messages in the API call
66
+ temperature=0.5,
67
+ top_p=0.7,
68
+ max_tokens=max_tokens,
69
+ stream=True,
70
+ )
71
+ response_chunks = []
72
+ for chunk in stream:
73
+ if chunk.choices[0].delta.content is not None:
74
+ response_chunks.append(chunk.choices[0].delta.content)
75
+ response = "".join(response_chunks)
76
+ st.markdown(response)
77
+
78
+ # Store the assistant response in the session state
79
+ st.session_state.messages.append({"role": "assistant", "content": response})