File size: 4,579 Bytes
712eefd
 
393fe1b
a721ae8
804de57
712eefd
 
 
 
598132b
 
c01b31d
 
3ab5f41
 
598132b
2554d32
598d79e
2554d32
598d79e
6fcbd03
077c11a
712eefd
 
1d88ef6
2445961
712eefd
2554d32
884e821
772c36a
 
 
 
 
 
 
 
598132b
712eefd
598d79e
712eefd
8b5d44e
712eefd
2554d32
712eefd
598d79e
 
 
 
 
 
 
 
 
 
42ff9fc
 
 
 
 
598d79e
 
 
495d9c1
0489589
598d79e
4cefc88
598d79e
626df00
6fcbd03
598d79e
712eefd
0489589
598d79e
 
 
 
 
 
 
 
712eefd
598d79e
 
 
 
 
 
 
 
712eefd
598d79e
 
 
 
 
42ff9fc
598d79e
 
712eefd
598d79e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
712eefd
95a4bda
712eefd
2554d32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import gradio as gr
from huggingface_hub import InferenceClient
import os 
import markdown


# Initialize the Hugging Face Inference Client
client = InferenceClient()


def render_latex(latex_input):
    rendered_html = f"""<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
               {latex_input}"""
    return f"{rendered_html}"


# Function to generate and format AI response
def generate_response(prompt_template, **kwargs):
    # Simulate processing/loading
    prompt = os.getenv(prompt_template).format(**kwargs)
    response = client.chat.completions.create(
        model="Qwen/Qwen2.5-Math-1.5B-Instruct",
        messages=[{"role": "user", "content": prompt}],
        temperature=0.7,
        max_tokens=1024,
        top_p=0.8
    )
    response_content = response.choices[0].message["content"]
    print(response_content)
    html = markdown.markdown(
        response_content,
        extensions=[
            "markdown.extensions.fenced_code",
            "markdown.extensions.tables",
            "markdown.extensions.attr_list",
        ]
    )
    return f"""{render_latex(html)}"""

# Gradio app interface
with gr.Blocks() as app:
    gr.HTML("""<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>""")
    gr.Markdown("## Mathematical Insight Tutor")
    gr.Markdown("An advanced AI-powered tutor to help you master math concepts with step-by-step explanations.")

    def create_tab(tab_name, prompt_template, inputs):
        with gr.Tab(tab_name):
            input_fields = []
            for inp in inputs:
                if inp["type"] == "textbox":
                    input_fields.append(
                        gr.Textbox(lines=inp.get("lines", 1), label=inp["label"], placeholder=inp["placeholder"])
                    )
                elif inp["type"] == "dropdown":
                    input_fields.append(
                        gr.Dropdown(choices=inp["choices"], label=inp["label"])
                    )
                elif inp["type"] == "value":
                    input_fields.append(
                        gr.Textbox(label=inp["label"], placeholder=inp["placeholder"])
                    )
            # Button and output
            button = gr.Button(f"{tab_name} Execute")
            output = gr.HTML("Results will be generated here")
            # Link button to the response wrapper
            button.click(
                fn=lambda *args: generate_response(prompt_template, **dict(zip([inp["key"] for inp in inputs], args))),
                inputs=input_fields,
                outputs=output,
                api_name=f"/{tab_name.lower().replace(' ', '_')}_execute"
            )

    # Tabs for functionalities
    create_tab(
        "Solve a Problem",
        "PROMPT_SOLVE",
        [
            {"key": "problem", "type": "textbox", "label": "Enter Math Problem", "placeholder": "e.g., Solve for x: 2x + 5 = 15"},
            {"key": "difficulty", "type": "dropdown", "label": "Difficulty Level", "choices": ["Beginner", "Intermediate", "Advanced"]}
        ]
    )

    create_tab(
        "Generate a Hint",
        "PROMPT_HINT",
        [
            {"key": "problem", "type": "textbox", "label": "Enter Math Problem for Hint", "placeholder": "e.g., Solve for x: 2x + 5 = 15"},
            {"key": "difficulty", "type": "dropdown", "label": "Difficulty Level", "choices": ["Beginner", "Intermediate", "Advanced"]}
        ]
    )

    create_tab(
        "Verify Solution",
        "PROMPT_VERIFY",
        [
            {"key": "problem", "type": "textbox", "label": "Enter Math Problem", "placeholder": "e.g., Solve for x: 2x + 5 = 15"},
            {"key": "solution", "type": "value", "label": "Enter Your Solution", "placeholder": "e.g., x = 5"}
        ]
    )

    create_tab(
        "Generate Practice Question",
        "PROMPT_GENERATE",
        [
            {"key": "topic", "type": "textbox", "label": "Enter Math Topic", "placeholder": "e.g., Algebra, Calculus"},
            {"key": "difficulty", "type": "dropdown", "label": "Difficulty Level", "choices": ["Beginner", "Intermediate", "Advanced"]}
        ]
    )

    create_tab(
        "Explain Concept",
        "PROMPT_EXPLAIN",
        [
            {"key": "problem", "type": "textbox", "label": "Enter Math Problem", "placeholder": "e.g., Solve for x: 2x + 5 = 15"},
            {"key": "difficulty", "type": "dropdown", "label": "Difficulty Level", "choices": ["Beginner", "Intermediate", "Advanced"]}
        ]
    )


# Launch the app
app.launch(debug=True)