Spaces:
Running
Running
import spaces | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig | |
from PIL import Image | |
import torch | |
import requests | |
# Load the processor and model | |
processor = AutoProcessor.from_pretrained( | |
'allenai/Molmo-7B-D-0924', | |
trust_remote_code=True, | |
torch_dtype='auto', | |
device_map='auto' | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
'allenai/Molmo-7B-D-0924', | |
trust_remote_code=True, | |
torch_dtype='auto', | |
device_map='auto' | |
) | |
def describe_image(image): | |
# Process the image | |
inputs = processor.process(images=[image], text="Describe this image.") | |
# Move inputs to the correct device and make a batch of size 1 | |
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} | |
# Generate output with maximum 200 new tokens | |
output = model.generate_from_batch( | |
inputs, | |
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), | |
tokenizer=processor.tokenizer | |
) | |
# Decode and return generated text | |
generated_tokens = output[0, inputs['input_ids'].size(1):] | |
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
return generated_text | |
# Gradio interface | |
gr.Interface( | |
fn=describe_image, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs="text", | |
title="Visual Language Model - Molmo", | |
description="Upload an image, and the model will generate a detailed description of it." | |
).launch() | |