Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import threading
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
from transformers import (
|
7 |
+
AutoModelForCausalLM,
|
8 |
+
AutoTokenizer,
|
9 |
+
TextIteratorStreamer,
|
10 |
+
)
|
11 |
+
|
12 |
+
MODEL_ID = os.getenv("MODEL_ID", "yasserrmd/SoftwareArchitecture-Instruct-v1")
|
13 |
+
|
14 |
+
# -------- Load model & tokenizer --------
|
15 |
+
print(f"Loading model: {MODEL_ID}")
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True, trust_remote_code=True)
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
MODEL_ID,
|
19 |
+
device_map="auto",
|
20 |
+
torch_dtype="auto",
|
21 |
+
low_cpu_mem_usage=True,
|
22 |
+
trust_remote_code=True,
|
23 |
+
)
|
24 |
+
model.eval()
|
25 |
+
|
26 |
+
# Ensure a pad token to avoid warnings on some bases
|
27 |
+
if tokenizer.pad_token_id is None:
|
28 |
+
tokenizer.pad_token = tokenizer.eos_token
|
29 |
+
|
30 |
+
TITLE = "SoftwareArchitecture-Instruct v1 — Chat"
|
31 |
+
DESCRIPTION = (
|
32 |
+
"An instruction-tuned LLM for **software architecture**. "
|
33 |
+
"Built on LiquidAI/LFM2-1.2B, fine-tuned with the Software-Architecture dataset. "
|
34 |
+
"Designed for technical professionals: accurate, detailed, and on-topic answers."
|
35 |
+
)
|
36 |
+
|
37 |
+
SAMPLES = [
|
38 |
+
"Explain the API Gateway pattern and when to use it.",
|
39 |
+
"CQRS vs Event Sourcing — how do they relate, and when would you combine them?",
|
40 |
+
"Design a resilient payment workflow with retries, idempotency keys, and DLQ.",
|
41 |
+
"Rate limiting strategies for a public REST API: token bucket vs sliding window.",
|
42 |
+
"Multi-tenant SaaS: compare shared DB, schema, and dedicated DB for isolation.",
|
43 |
+
"Blue/green vs canary deployments — trade-offs and where each fits best.",
|
44 |
+
]
|
45 |
+
|
46 |
+
def format_history_as_messages(history):
|
47 |
+
"""
|
48 |
+
Convert Gradio chat history into OpenAI-style messages for apply_chat_template.
|
49 |
+
history: list of tuples (user, assistant)
|
50 |
+
"""
|
51 |
+
messages = []
|
52 |
+
for (u, a) in history:
|
53 |
+
if u:
|
54 |
+
messages.append({"role": "user", "content": u})
|
55 |
+
if a:
|
56 |
+
messages.append({"role": "assistant", "content": a})
|
57 |
+
return messages
|
58 |
+
|
59 |
+
def stream_generate(messages, max_new_tokens, temperature, top_p, repetition_penalty, seed=None):
|
60 |
+
"""
|
61 |
+
Stream text from model.generate using TextIteratorStreamer.
|
62 |
+
"""
|
63 |
+
if seed is not None and seed >= 0:
|
64 |
+
torch.manual_seed(seed)
|
65 |
+
|
66 |
+
inputs = tokenizer.apply_chat_template(
|
67 |
+
messages,
|
68 |
+
add_generation_prompt=True, # IMPORTANT for chat models
|
69 |
+
return_tensors="pt",
|
70 |
+
tokenize=True,
|
71 |
+
return_dict=True,
|
72 |
+
)
|
73 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
74 |
+
|
75 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
76 |
+
gen_kwargs = dict(
|
77 |
+
**inputs,
|
78 |
+
max_new_tokens=max_new_tokens,
|
79 |
+
temperature=float(temperature),
|
80 |
+
top_p=float(top_p),
|
81 |
+
repetition_penalty=float(repetition_penalty),
|
82 |
+
do_sample=True if temperature > 0 else False,
|
83 |
+
use_cache=True,
|
84 |
+
streamer=streamer,
|
85 |
+
)
|
86 |
+
|
87 |
+
# Run generation in a thread so we can yield from streamer
|
88 |
+
thread = threading.Thread(target=model.generate, kwargs=gen_kwargs)
|
89 |
+
thread.start()
|
90 |
+
|
91 |
+
partial_text = ""
|
92 |
+
for new_text in streamer:
|
93 |
+
partial_text += new_text
|
94 |
+
yield partial_text
|
95 |
+
|
96 |
+
# -------- Gradio callbacks --------
|
97 |
+
|
98 |
+
def chat_respond(user_msg, chat_history, max_new_tokens, temperature, top_p, repetition_penalty, seed):
|
99 |
+
if not user_msg or not user_msg.strip():
|
100 |
+
return gr.update(), chat_history
|
101 |
+
|
102 |
+
# Add user turn
|
103 |
+
chat_history = chat_history + [(user_msg, None)]
|
104 |
+
|
105 |
+
# Build messages from full history
|
106 |
+
messages = format_history_as_messages(chat_history)
|
107 |
+
|
108 |
+
# Stream assistant output
|
109 |
+
stream = stream_generate(
|
110 |
+
messages=messages,
|
111 |
+
max_new_tokens=int(max_new_tokens),
|
112 |
+
temperature=float(temperature),
|
113 |
+
top_p=float(top_p),
|
114 |
+
repetition_penalty=float(repetition_penalty),
|
115 |
+
seed=int(seed) if seed is not None else None,
|
116 |
+
)
|
117 |
+
|
118 |
+
# Yield progressive updates for the last assistant turn
|
119 |
+
final_assistant_text = ""
|
120 |
+
for chunk in stream:
|
121 |
+
final_assistant_text = chunk
|
122 |
+
yield gr.update(value=chat_history[:-1] + [(user_msg, final_assistant_text)]), ""
|
123 |
+
|
124 |
+
# Ensure final state returned
|
125 |
+
chat_history[-1] = (user_msg, final_assistant_text)
|
126 |
+
yield gr.update(value=chat_history), ""
|
127 |
+
|
128 |
+
def use_sample(sample, chat_history):
|
129 |
+
return sample, chat_history
|
130 |
+
|
131 |
+
def clear_chat():
|
132 |
+
return []
|
133 |
+
|
134 |
+
# -------- UI --------
|
135 |
+
|
136 |
+
CUSTOM_CSS = """
|
137 |
+
:root {
|
138 |
+
--brand: #0ea5e9; /* cyan-500 */
|
139 |
+
--ink: #0b1220;
|
140 |
+
}
|
141 |
+
.gradio-container {
|
142 |
+
font-family: Inter, ui-sans-serif, system-ui, -apple-system, Segoe UI, Roboto, Helvetica, Arial, "Apple Color Emoji","Segoe UI Emoji";
|
143 |
+
}
|
144 |
+
#title h1 {
|
145 |
+
font-weight: 700;
|
146 |
+
letter-spacing: -0.02em;
|
147 |
+
}
|
148 |
+
#desc {
|
149 |
+
opacity: 0.9;
|
150 |
+
}
|
151 |
+
footer {visibility: hidden}
|
152 |
+
"""
|
153 |
+
|
154 |
+
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft(primary_hue="cyan")) as demo:
|
155 |
+
with gr.Row():
|
156 |
+
with gr.Column():
|
157 |
+
gr.HTML(f"<div id='title'><h1>{TITLE}</h1></div>")
|
158 |
+
gr.Markdown(f"<div id='desc'>{DESCRIPTION}</div>", elem_id="desc")
|
159 |
+
|
160 |
+
with gr.Row():
|
161 |
+
with gr.Column(scale=4):
|
162 |
+
chat = gr.Chatbot(
|
163 |
+
label="SoftwareArchitecture-Instruct v1",
|
164 |
+
avatar_images=(None, None),
|
165 |
+
height=480,
|
166 |
+
bubble_full_width=False,
|
167 |
+
likeable=False,
|
168 |
+
sanitize_html=False,
|
169 |
+
)
|
170 |
+
with gr.Row():
|
171 |
+
user_box = gr.Textbox(
|
172 |
+
placeholder="Ask about software architecture…",
|
173 |
+
show_label=False,
|
174 |
+
lines=3,
|
175 |
+
autofocus=True,
|
176 |
+
scale=4,
|
177 |
+
)
|
178 |
+
send_btn = gr.Button("Send", variant="primary", scale=1)
|
179 |
+
|
180 |
+
with gr.Accordion("Generation Settings", open=False):
|
181 |
+
max_new_tokens = gr.Slider(64, 1024, value=256, step=16, label="Max new tokens")
|
182 |
+
temperature = gr.Slider(0.0, 1.5, value=0.3, step=0.05, label="Temperature")
|
183 |
+
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
|
184 |
+
repetition_penalty = gr.Slider(1.0, 1.5, value=1.05, step=0.01, label="Repetition penalty")
|
185 |
+
seed = gr.Number(value=-1, precision=0, label="Seed (-1 for random)")
|
186 |
+
|
187 |
+
with gr.Row():
|
188 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
189 |
+
# sample buttons
|
190 |
+
sample_dropdown = gr.Dropdown(choices=SAMPLES, label="Samples", value=None)
|
191 |
+
use_sample_btn = gr.Button("Use Sample")
|
192 |
+
|
193 |
+
with gr.Column(scale=2):
|
194 |
+
gr.Markdown("### Samples")
|
195 |
+
gr.Markdown("\n".join([f"• {s}" for s in SAMPLES]))
|
196 |
+
gr.Markdown("—\n**Tip:** Increase *Max new tokens* for longer, more complete answers.")
|
197 |
+
|
198 |
+
# Events
|
199 |
+
send_btn.click(
|
200 |
+
chat_respond,
|
201 |
+
inputs=[user_box, chat, max_new_tokens, temperature, top_p, repetition_penalty, seed],
|
202 |
+
outputs=[chat, user_box],
|
203 |
+
queue=True,
|
204 |
+
show_progress=True,
|
205 |
+
)
|
206 |
+
user_box.submit(
|
207 |
+
chat_respond,
|
208 |
+
inputs=[user_box, chat, max_new_tokens, temperature, top_p, repetition_penalty, seed],
|
209 |
+
outputs=[chat, user_box],
|
210 |
+
queue=True,
|
211 |
+
show_progress=True,
|
212 |
+
)
|
213 |
+
clear_btn.click(fn=clear_chat, outputs=chat)
|
214 |
+
|
215 |
+
use_sample_btn.click(use_sample, inputs=[sample_dropdown, chat], outputs=[user_box, chat])
|
216 |
+
|
217 |
+
gr.Markdown(
|
218 |
+
"—\nBuilt for engineers and architects. Base model: **LiquidAI/LFM2-1.2B** · Fine-tuned: **Software-Architecture** dataset."
|
219 |
+
)
|
220 |
+
|
221 |
+
if __name__ == "__main__":
|
222 |
+
demo.queue().launch()
|