import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import spaces import torch # Load model with 8-bit precision model_name = "yasserrmd/SmolLM2-135M-synthetic-dlp" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map ="cuda" ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Load the pipeline generator = pipeline( "text-generation", model=model, tokenizer=tokenizer ) @spaces.GPU def chat_assistant(chat_history, user_input): """Generate a response based on user input and chat history.""" # Generate response prompt = "\n".join([f"{entry['role']}: {entry['content']}" for entry in chat_history]) prompt += f"\nuser: {user_input}\nassistant: " response = generator( [{"role": "system", "content": "You are a Data Loss Prevention (DLP) assistant designed to help users with questions and tasks related to data security, compliance, and policy enforcement. Respond concisely and professionally, offering practical guidance while ensuring clarity. If additional context or follow-up questions are required, ask the user to refine their input or provide specific examples."}, {"role": "user", "content": user_input}], max_new_tokens=512, return_full_text=False )[0]["generated_text"] # Append to chat history chat_history.append(("user", user_input)) chat_history.append(("assistant", response)) # Return updated chat history return chat_history, chat_history # Initial chat history chat_history = [] def reset_chat(): global chat_history chat_history = [] return [] # Gradio Interface with gr.Blocks() as dlp_chat_app: gr.Markdown("""### DLP Chat Assistant\nAsk your questions about Data Loss Prevention (DLP). """) with gr.Row(): chat_box = gr.Chatbot( label="Chat History", placeholder="Assistant responses will appear here...", ) user_input = gr.Textbox( label="Your Input", placeholder="Type your message here...", lines=1 ) send_button = gr.Button("Send") reset_button = gr.Button("Reset Chat") send_button.click( fn=chat_assistant, inputs=[gr.State(chat_history), user_input], outputs=[chat_box, gr.State(chat_history)] ) reset_button.click( fn=reset_chat, inputs=[], outputs=chat_box ) # Launch the app dlp_chat_app.launch(debug=True)