File size: 2,836 Bytes
3b4968e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dda573
3b4968e
5dda573
3b4968e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from fastapi import FastAPI, UploadFile, File, Response, Request
from fastapi.staticfiles import StaticFiles
import ggwave
import scipy.io.wavfile as wav
import numpy as np
import os
from pydantic import BaseModel
from groq import Groq
import io

app = FastAPI()

# Serve static files
app.mount("/static", StaticFiles(directory="static"), name="static")

# Initialize ggwave instance
instance = ggwave.init()

# Initialize Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

class TextInput(BaseModel):
    text: str

@app.get("/")
async def serve_homepage():
    """Serve the chat interface HTML."""
    with open("static/index.html", "r") as f:
        return Response(content=f.read(), media_type="text/html")

@app.post("/stt/")
async def speech_to_text(file: UploadFile = File(...)):
    """Convert WAV audio file to text using ggwave."""
    with open("temp.wav", "wb") as audio_file:
        audio_file.write(await file.read())
    
    # Load WAV file
    fs, recorded_waveform = wav.read("temp.wav")
    os.remove("temp.wav")
    
    # Convert to bytes and decode
    waveform_bytes = recorded_waveform.astype(np.uint8).tobytes()
    decoded_message = ggwave.decode(instance, waveform_bytes)
    
    return {"text": decoded_message}

@app.post("/tts/")
def text_to_speech(input_text: TextInput):
    """Convert text to a WAV audio file using ggwave and return as response."""
    encoded_waveform = ggwave.encode(instance, input_text.text)
    buffer = io.BytesIO()
    wav.write(buffer, 44100, np.frombuffer(encoded_waveform, dtype=np.uint8))
    buffer.seek(0)
    return Response(content=buffer.getvalue(), media_type="audio/wav")

@app.post("/chat/")
async def chat_with_llm(file: UploadFile = File(...)):
    """Process input WAV, send text to LLM, and return generated response as WAV."""
    with open("input_chat.wav", "wb") as audio_file:
        audio_file.write(await file.read())
    
    # Load WAV file
    fs, recorded_waveform = wav.read("input_chat.wav")
    os.remove("input_chat.wav")
    
    # Convert to bytes and decode
    waveform_bytes = recorded_waveform.astype(np.uint8).tobytes()
    user_message = ggwave.decode(instance, waveform_bytes)
    
    # Send to LLM
    chat_completion = client.chat.completions.create(
        messages=[{"role": "user", "content": user_message}],
        model="llama-3.3-70b-versatile",
    )
    llm_response = chat_completion.choices[0].message.content
    
    # Convert response to audio
    response_waveform = ggwave.encode(instance, llm_response)
    buffer = io.BytesIO()
    wav.write(buffer, 44100, np.frombuffer(response_waveform, dtype=np.uint8))
    buffer.seek(0)
    
    return Response(content=buffer.getvalue(), media_type="audio/wav", headers={
        "X-User-Message": user_message,
        "X-LLM-Response": llm_response
    })