from fastapi import FastAPI, UploadFile, File, Response, Request, Form, Body from fastapi.staticfiles import StaticFiles from fastapi.responses import FileResponse import ggwave import scipy.io.wavfile as wav import numpy as np import os from pydantic import BaseModel from groq import Groq import io import wave import json from typing import List, Dict, Optional app = FastAPI() # Serve static files app.mount("/static", StaticFiles(directory="static"), name="static") # Initialize Groq client client = Groq(api_key=os.environ.get("GROQ_API_KEY")) class TextInput(BaseModel): text: str @app.get("/") async def serve_homepage(): """Serve the chat interface HTML.""" return FileResponse("static/index.html") @app.get("/conv/") async def serve_convpage(): """Serve the chat interface HTML.""" return FileResponse("static/conv.html") @app.post("/stt/") async def speech_to_text(file: UploadFile = File(...)): """Convert WAV audio file to text using ggwave.""" with open("temp.wav", "wb") as audio_file: audio_file.write(await file.read()) # Load WAV file fs, recorded_waveform = wav.read("temp.wav") os.remove("temp.wav") # Convert to bytes and decode waveform_bytes = recorded_waveform.astype(np.uint8).tobytes() decoded_message = ggwave.decode(instance, waveform_bytes) return {"text": decoded_message} @app.post("/tts/") def text_to_speech(input_text: TextInput): """Convert text to a WAV audio file using ggwave and return as response.""" encoded_waveform = ggwave.encode(input_text.text, protocolId=1, volume=100) # Convert byte data into float32 array waveform_float32 = np.frombuffer(encoded_waveform, dtype=np.float32) # Normalize float32 data to the range of int16 waveform_int16 = np.int16(waveform_float32 * 32767) # Save to buffer instead of a file buffer = io.BytesIO() with wave.open(buffer, "wb") as wf: wf.setnchannels(1) # Mono audio wf.setsampwidth(2) # 2 bytes per sample (16-bit PCM) wf.setframerate(48000) # Sample rate wf.writeframes(waveform_int16.tobytes()) # Write waveform as bytes buffer.seek(0) return Response(content=buffer.getvalue(), media_type="audio/wav") @app.post("/chat/") async def chat_with_llm(file: UploadFile = File(...)): """Process input WAV, send text to LLM, and return generated response as WAV.""" try: # Log file details print(f"File received: {file.filename}, Content-Type: {file.content_type}") # Read the file content into memory file_content = await file.read() if not file_content: return Response( content="Empty file uploaded", media_type="text/plain", status_code=400 ) # Initialize ggwave instance instance = ggwave.init() # Create a BytesIO object to use with wav.read with io.BytesIO(file_content) as buffer: try: fs, recorded_waveform = wav.read(buffer) recorded_waveform = recorded_waveform.astype(np.float32) / 32767.0 waveform_bytes = recorded_waveform.tobytes() user_message = ggwave.decode(instance, waveform_bytes) if user_message is None: return Response( content="No message detected in audio", media_type="text/plain", status_code=400 ) print("Decoded user message:", user_message.decode("utf-8")) # Send to LLM chat_completion = client.chat.completions.create( messages=[ {"role": "system", "content": "you are a helpful assistant. answer always in one sentence"}, {"role": "user", "content": user_message.decode("utf-8")} ], model="llama-3.3-70b-versatile", ) llm_response = chat_completion.choices[0].message.content print("LLM Response:", llm_response) # Convert response to audio encoded_waveform = ggwave.encode(llm_response, protocolId=1, volume=100) # Convert byte data into float32 array waveform_float32 = np.frombuffer(encoded_waveform, dtype=np.float32) # Normalize float32 data to the range of int16 waveform_int16 = np.int16(waveform_float32 * 32767) # Save to buffer instead of a file buffer = io.BytesIO() with wave.open(buffer, "wb") as wf: wf.setnchannels(1) # Mono audio wf.setsampwidth(2) # 2 bytes per sample (16-bit PCM) wf.setframerate(48000) # Sample rate wf.writeframes(waveform_int16.tobytes()) # Write waveform as bytes buffer.seek(0) ggwave.free(instance) return Response( content=buffer.getvalue(), media_type="audio/wav", headers={ "X-User-Message": user_message.decode("utf-8"), "X-LLM-Response": llm_response } ) except Exception as e: print(f"Error processing audio: {str(e)}") ggwave.free(instance) return Response( content=f"Error processing audio: {str(e)}", media_type="text/plain", status_code=500 ) except Exception as e: print(f"Unexpected error: {str(e)}") return Response( content=f"Unexpected error: {str(e)}", media_type="text/plain", status_code=500 ) @app.post("/continuous-chat/") async def continuous_chat( file: UploadFile = File(...), chat_history: Optional[str] = Form(None) ): """Process input WAV with chat history, send text to LLM, and return response as WAV.""" # Initialize ggwave instance instance = ggwave.init() # Parse chat history if provided messages = [{"role": "system", "content": "you are a helpful assistant. answer always in one sentence"}] if chat_history: try: history = json.loads(chat_history) for msg in history: if msg["role"] in ["user", "assistant"]: messages.append(msg) except Exception as e: print(f"Error parsing chat history: {str(e)}") # Read the file content into memory file_content = await file.read() # Process the audio file with io.BytesIO(file_content) as buffer: try: fs, recorded_waveform = wav.read(buffer) recorded_waveform = recorded_waveform.astype(np.float32) / 32767.0 waveform_bytes = recorded_waveform.tobytes() user_message = ggwave.decode(instance, waveform_bytes) if user_message is None: return Response( content="No message detected in audio", media_type="text/plain", status_code=400 ) decoded_message = user_message.decode("utf-8") print("user_message: " + decoded_message) # Add user message to messages messages.append({"role": "user", "content": decoded_message}) # Send to LLM with full chat history chat_completion = client.chat.completions.create( messages=messages, model="llama-3.3-70b-versatile", ) llm_response = chat_completion.choices[0].message.content print(llm_response) # Convert response to audio encoded_waveform = ggwave.encode(llm_response, protocolId=1, volume=100) waveform_float32 = np.frombuffer(encoded_waveform, dtype=np.float32) waveform_int16 = np.int16(waveform_float32 * 32767) # Save to buffer buffer = io.BytesIO() with wave.open(buffer, "wb") as wf: wf.setnchannels(1) wf.setsampwidth(2) wf.setframerate(48000) wf.writeframes(waveform_int16.tobytes()) buffer.seek(0) ggwave.free(instance) return Response( content=buffer.getvalue(), media_type="audio/wav", headers={ "X-User-Message": decoded_message, "X-LLM-Response": llm_response } ) except Exception as e: print(f"Error processing audio: {str(e)}") ggwave.free(instance) return Response( content=f"Error processing audio: {str(e)}", media_type="text/plain", status_code=500 )