Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image, ImageDraw
|
4 |
-
import
|
|
|
5 |
|
6 |
st.set_page_config(
|
7 |
page_title="Fraktur Detektion",
|
@@ -11,98 +12,85 @@ st.set_page_config(
|
|
11 |
|
12 |
st.markdown("""
|
13 |
<style>
|
14 |
-
/* Reset et base */
|
15 |
.stApp {
|
16 |
-
background
|
17 |
-
padding: 0 !important;
|
18 |
-
overflow: hidden !important;
|
19 |
}
|
20 |
|
21 |
-
/* Variables de thème */
|
22 |
-
[data-theme="light"] {
|
23 |
-
--background-color: #ffffff;
|
24 |
-
--text-color: #1f2937;
|
25 |
-
--border-color: #e5e7eb;
|
26 |
-
--secondary-bg: #f3f4f6;
|
27 |
-
}
|
28 |
-
|
29 |
-
[data-theme="dark"] {
|
30 |
-
--background-color: #1f2937;
|
31 |
-
--text-color: #f3f4f6;
|
32 |
-
--border-color: #4b5563;
|
33 |
-
--secondary-bg: #374151;
|
34 |
-
}
|
35 |
-
|
36 |
-
/* Layout principal */
|
37 |
.block-container {
|
38 |
-
padding: 0
|
39 |
-
|
|
|
40 |
}
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
border-radius:
|
46 |
-
|
47 |
-
|
|
|
48 |
}
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
padding:
|
|
|
|
|
53 |
}
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
}
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
border-radius: 0.375rem;
|
67 |
-
margin: 0.25rem 0;
|
68 |
-
background: var(--secondary-bg);
|
69 |
-
border: 1px solid var(--border-color);
|
70 |
-
color: var(--text-color);
|
71 |
}
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
color: var(--text-color) !important;
|
79 |
}
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
84 |
}
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
gap: 0.5rem !important;
|
89 |
}
|
90 |
|
91 |
-
.
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
}
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
}
|
99 |
|
100 |
-
|
101 |
-
|
102 |
}
|
103 |
|
104 |
-
|
105 |
-
|
|
|
106 |
}
|
107 |
</style>
|
108 |
""", unsafe_allow_html=True)
|
@@ -119,7 +107,7 @@ def load_models():
|
|
119 |
def translate_label(label):
|
120 |
translations = {
|
121 |
"fracture": "Knochenbruch",
|
122 |
-
"no fracture": "Kein
|
123 |
"normal": "Normal",
|
124 |
"abnormal": "Auffällig",
|
125 |
"F1": "Knochenbruch",
|
@@ -127,149 +115,174 @@ def translate_label(label):
|
|
127 |
}
|
128 |
return translations.get(label.lower(), label)
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
def draw_boxes(image, predictions):
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
133 |
box = pred['box']
|
134 |
score = pred['score']
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
# Score 0.6 -> 36.5°C (seuil minimum = "normal")
|
139 |
-
temp = 36.5 + (score - 0.6) * (39 - 36.5) / 0.4
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
elif score > 0.7:
|
145 |
-
color = "#ea580c" # orange pour confiance moyenne-haute
|
146 |
-
else:
|
147 |
-
color = "#eab308" # jaune pour confiance moyenne
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
)
|
|
|
155 |
|
156 |
-
# Créer le label avec température
|
157 |
-
label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)"
|
158 |
-
|
159 |
-
# Fond pour le texte
|
160 |
-
text_bbox = draw.textbbox((box['xmin'], box['ymin']-15), label)
|
161 |
-
draw.rectangle(text_bbox, fill=color)
|
162 |
-
|
163 |
-
# Texte
|
164 |
draw.text(
|
165 |
-
(box['xmin'], box['ymin']-
|
166 |
label,
|
167 |
-
fill="
|
|
|
|
|
168 |
)
|
169 |
|
170 |
-
return
|
171 |
|
172 |
def main():
|
173 |
models = load_models()
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
with col1:
|
179 |
-
st.markdown("### 📤 Röntgenbild Upload")
|
180 |
-
uploaded_file = st.file_uploader("", type=['png', 'jpg', 'jpeg'])
|
181 |
|
182 |
-
|
|
|
183 |
conf_threshold = st.slider(
|
184 |
"Konfidenzschwelle",
|
185 |
min_value=0.0, max_value=1.0,
|
186 |
-
value=0.60, step=0.05
|
|
|
187 |
)
|
|
|
|
|
188 |
|
189 |
-
|
190 |
-
|
191 |
image = Image.open(uploaded_file)
|
|
|
192 |
|
193 |
-
|
|
|
|
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
else:
|
205 |
-
st.image(image, use_container_width=True)
|
206 |
-
st.info("Keine signifikanten Auffälligkeiten gefunden.")
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
|
|
245 |
st.markdown(f"""
|
246 |
-
<div class=
|
247 |
-
<
|
248 |
-
|
249 |
-
</span> - {translate_label(pred['label'])}
|
250 |
</div>
|
251 |
""", unsafe_allow_html=True)
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
if (e.data.type === 'theme-change') {
|
266 |
-
updateTheme(e.data.theme === 'dark');
|
267 |
-
}
|
268 |
-
});
|
269 |
-
|
270 |
-
updateTheme(window.matchMedia('(prefers-color-scheme: dark)').matches);
|
271 |
-
</script>
|
272 |
-
""", unsafe_allow_html=True)
|
273 |
|
274 |
if __name__ == "__main__":
|
275 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image, ImageDraw
|
4 |
+
import numpy as np
|
5 |
+
import colorsys
|
6 |
|
7 |
st.set_page_config(
|
8 |
page_title="Fraktur Detektion",
|
|
|
12 |
|
13 |
st.markdown("""
|
14 |
<style>
|
|
|
15 |
.stApp {
|
16 |
+
background: #f0f2f5 !important;
|
|
|
|
|
17 |
}
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
.block-container {
|
20 |
+
padding-top: 0 !important;
|
21 |
+
padding-bottom: 0 !important;
|
22 |
+
max-width: 1400px !important;
|
23 |
}
|
24 |
|
25 |
+
.upload-container {
|
26 |
+
background: white;
|
27 |
+
padding: 1.5rem;
|
28 |
+
border-radius: 10px;
|
29 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
30 |
+
margin-bottom: 1rem;
|
31 |
+
text-align: center;
|
32 |
}
|
33 |
|
34 |
+
.results-container {
|
35 |
+
background: white;
|
36 |
+
padding: 1.5rem;
|
37 |
+
border-radius: 10px;
|
38 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
39 |
}
|
40 |
|
41 |
+
.result-box {
|
42 |
+
background: #f8f9fa;
|
43 |
+
padding: 0.75rem;
|
44 |
+
border-radius: 8px;
|
45 |
+
margin: 0.5rem 0;
|
46 |
+
border: 1px solid #e9ecef;
|
47 |
}
|
48 |
|
49 |
+
h1, h2, h3, h4, p {
|
50 |
+
color: #1a1a1a !important;
|
51 |
+
margin: 0.5rem 0 !important;
|
|
|
|
|
|
|
|
|
|
|
52 |
}
|
53 |
|
54 |
+
.stImage {
|
55 |
+
background: white;
|
56 |
+
padding: 0.5rem;
|
57 |
+
border-radius: 8px;
|
58 |
+
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
|
|
|
59 |
}
|
60 |
|
61 |
+
.stImage > img {
|
62 |
+
max-height: 300px !important;
|
63 |
+
width: auto !important;
|
64 |
+
margin: 0 auto !important;
|
65 |
+
display: block !important;
|
66 |
}
|
67 |
|
68 |
+
[data-testid="stFileUploader"] {
|
69 |
+
width: 100% !important;
|
|
|
70 |
}
|
71 |
|
72 |
+
.stButton > button {
|
73 |
+
width: 200px;
|
74 |
+
background-color: #0066cc !important;
|
75 |
+
color: white !important;
|
76 |
+
border: none !important;
|
77 |
+
padding: 0.5rem 1rem !important;
|
78 |
+
border-radius: 5px !important;
|
79 |
+
transition: all 0.3s ease !important;
|
80 |
}
|
81 |
|
82 |
+
.stButton > button:hover {
|
83 |
+
background-color: #0052a3 !important;
|
84 |
+
transform: translateY(-1px);
|
85 |
}
|
86 |
|
87 |
+
#MainMenu, footer, header, [data-testid="stToolbar"] {
|
88 |
+
display: none !important;
|
89 |
}
|
90 |
|
91 |
+
/* Hide deprecation warning */
|
92 |
+
[data-testid="stExpander"], .element-container:has(>.stAlert) {
|
93 |
+
display: none !important;
|
94 |
}
|
95 |
</style>
|
96 |
""", unsafe_allow_html=True)
|
|
|
107 |
def translate_label(label):
|
108 |
translations = {
|
109 |
"fracture": "Knochenbruch",
|
110 |
+
"no fracture": "Kein Knochenbruch",
|
111 |
"normal": "Normal",
|
112 |
"abnormal": "Auffällig",
|
113 |
"F1": "Knochenbruch",
|
|
|
115 |
}
|
116 |
return translations.get(label.lower(), label)
|
117 |
|
118 |
+
def create_heatmap_overlay(image, box, score):
|
119 |
+
overlay = Image.new('RGBA', image.size, (0, 0, 0, 0))
|
120 |
+
draw = ImageDraw.Draw(overlay)
|
121 |
+
|
122 |
+
def get_temp_color(value):
|
123 |
+
if value > 0.8:
|
124 |
+
return (255, 0, 0) # Rouge vif
|
125 |
+
elif value > 0.6:
|
126 |
+
return (255, 69, 0) # Rouge-orange
|
127 |
+
elif value > 0.4:
|
128 |
+
return (255, 165, 0) # Orange
|
129 |
+
else:
|
130 |
+
return (255, 255, 0) # Jaune
|
131 |
+
|
132 |
+
x1, y1 = box['xmin'], box['ymin']
|
133 |
+
x2, y2 = box['xmax'], box['ymax']
|
134 |
+
width = x2 - x1
|
135 |
+
height = y2 - y1
|
136 |
+
|
137 |
+
steps = 30
|
138 |
+
for i in range(steps):
|
139 |
+
alpha = int(255 * (1 - (i / steps)) * 0.7)
|
140 |
+
base_color = get_temp_color(score)
|
141 |
+
color = base_color + (alpha,)
|
142 |
+
|
143 |
+
shrink_x = (i * width) / (steps * 2)
|
144 |
+
shrink_y = (i * height) / (steps * 2)
|
145 |
+
|
146 |
+
draw.rectangle(
|
147 |
+
[x1 + shrink_x, y1 + shrink_y, x2 - shrink_x, y2 - shrink_y],
|
148 |
+
fill=color,
|
149 |
+
outline=None
|
150 |
+
)
|
151 |
+
|
152 |
+
border_color = get_temp_color(score) + (200,)
|
153 |
+
draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
|
154 |
+
|
155 |
+
return overlay
|
156 |
+
|
157 |
def draw_boxes(image, predictions):
|
158 |
+
result_image = image.copy().convert('RGBA')
|
159 |
+
|
160 |
+
sorted_predictions = sorted(predictions, key=lambda x: x['score'])
|
161 |
+
|
162 |
+
for pred in sorted_predictions:
|
163 |
box = pred['box']
|
164 |
score = pred['score']
|
165 |
|
166 |
+
heatmap = create_heatmap_overlay(image, box, score)
|
167 |
+
result_image = Image.alpha_composite(result_image, heatmap)
|
|
|
|
|
168 |
|
169 |
+
draw = ImageDraw.Draw(result_image)
|
170 |
+
temp = 36.5 + (score * 2.5)
|
171 |
+
label = f"{translate_label(pred['label'])} ({score:.1%}) • {temp:.1f}°C"
|
|
|
|
|
|
|
|
|
172 |
|
173 |
+
text_bbox = draw.textbbox((box['xmin'], box['ymin']-25), label)
|
174 |
+
padding = 3
|
175 |
+
text_bbox = (
|
176 |
+
text_bbox[0]-padding, text_bbox[1]-padding,
|
177 |
+
text_bbox[2]+padding, text_bbox[3]+padding
|
178 |
)
|
179 |
+
draw.rectangle(text_bbox, fill="#000000CC")
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
draw.text(
|
182 |
+
(box['xmin'], box['ymin']-25),
|
183 |
label,
|
184 |
+
fill="#FFFFFF",
|
185 |
+
stroke_width=1,
|
186 |
+
stroke_fill="#000000"
|
187 |
)
|
188 |
|
189 |
+
return result_image
|
190 |
|
191 |
def main():
|
192 |
models = load_models()
|
193 |
+
|
194 |
+
with st.container():
|
195 |
+
st.write("### 📤 Röntgenbild hochladen")
|
196 |
+
uploaded_file = st.file_uploader("Bild auswählen", type=['png', 'jpg', 'jpeg'], label_visibility="collapsed")
|
|
|
|
|
|
|
197 |
|
198 |
+
col1, col2 = st.columns([2, 1])
|
199 |
+
with col1:
|
200 |
conf_threshold = st.slider(
|
201 |
"Konfidenzschwelle",
|
202 |
min_value=0.0, max_value=1.0,
|
203 |
+
value=0.60, step=0.05,
|
204 |
+
label_visibility="visible"
|
205 |
)
|
206 |
+
with col2:
|
207 |
+
analyze_button = st.button("Analysieren")
|
208 |
|
209 |
+
if uploaded_file and analyze_button:
|
210 |
+
with st.spinner("Bild wird analysiert..."):
|
211 |
image = Image.open(uploaded_file)
|
212 |
+
results_container = st.container()
|
213 |
|
214 |
+
predictions_watcher = models["KnochenWächter"](image)
|
215 |
+
predictions_master = models["RöntgenMeister"](image)
|
216 |
+
predictions_locator = models["KnochenAuge"](image)
|
217 |
|
218 |
+
has_fracture = False
|
219 |
+
max_fracture_score = 0
|
220 |
+
filtered_locations = [p for p in predictions_locator
|
221 |
+
if p['score'] >= conf_threshold
|
222 |
+
and 'fracture' in p['label'].lower()]
|
223 |
|
224 |
+
for pred in predictions_watcher:
|
225 |
+
if pred['score'] >= conf_threshold and 'fracture' in pred['label'].lower():
|
226 |
+
has_fracture = True
|
227 |
+
max_fracture_score = max(max_fracture_score, pred['score'])
|
|
|
|
|
|
|
228 |
|
229 |
+
with results_container:
|
230 |
+
st.write("### 🔍 Analyse Ergebnisse")
|
231 |
+
col1, col2 = st.columns(2)
|
232 |
+
|
233 |
+
with col1:
|
234 |
+
st.write("#### 🤖 KI-Diagnose")
|
235 |
+
|
236 |
+
st.write("##### 🛡️ KnochenWächter")
|
237 |
+
for pred in predictions_watcher:
|
238 |
+
if pred['score'] >= conf_threshold:
|
239 |
+
confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
|
240 |
+
label_lower = pred['label'].lower()
|
241 |
+
if 'fracture' in label_lower:
|
242 |
+
has_fracture = True
|
243 |
+
max_fracture_score = max(max_fracture_score, pred['score'])
|
244 |
+
st.markdown(f"""
|
245 |
+
<div class="result-box" style="color: #1a1a1a;">
|
246 |
+
<span style="color: {confidence_color}; font-weight: 500;">
|
247 |
+
{pred['score']:.1%}
|
248 |
+
</span> - {translate_label(pred['label'])}
|
249 |
+
</div>
|
250 |
+
""", unsafe_allow_html=True)
|
251 |
+
|
252 |
+
st.write("#### 🎓 RöntgenMeister")
|
253 |
+
for pred in predictions_master:
|
254 |
+
if pred['score'] >= conf_threshold:
|
255 |
+
confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
|
256 |
+
st.markdown(f"""
|
257 |
+
<div class="result-box" style="color: #1a1a1a;">
|
258 |
+
<span style="color: {confidence_color}; font-weight: 500;">
|
259 |
+
{pred['score']:.1%}
|
260 |
+
</span> - {translate_label(pred['label'])}
|
261 |
+
</div>
|
262 |
+
""", unsafe_allow_html=True)
|
263 |
+
|
264 |
+
if max_fracture_score > 0:
|
265 |
+
st.write("#### 📊 Wahrscheinlichkeit")
|
266 |
+
no_fracture_prob = 1 - max_fracture_score
|
267 |
st.markdown(f"""
|
268 |
+
<div class="result-box" style="color: #1a1a1a;">
|
269 |
+
Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
|
270 |
+
Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
|
|
|
271 |
</div>
|
272 |
""", unsafe_allow_html=True)
|
273 |
+
|
274 |
+
with col2:
|
275 |
+
predictions = models["KnochenAuge"](image)
|
276 |
+
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold
|
277 |
+
and 'fracture' in p['label'].lower()]
|
278 |
+
|
279 |
+
if filtered_preds:
|
280 |
+
st.write("#### 🎯 Fraktur Lokalisation")
|
281 |
+
result_image = draw_boxes(image, filtered_preds)
|
282 |
+
st.image(result_image, use_container_width=True)
|
283 |
+
else:
|
284 |
+
st.write("#### 🖼️ Röntgenbild")
|
285 |
+
st.image(image, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
if __name__ == "__main__":
|
288 |
main()
|