yassonee commited on
Commit
268bd19
·
verified ·
1 Parent(s): ed3121c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -88
app.py CHANGED
@@ -120,7 +120,6 @@ def create_heatmap_overlay(image, box, score):
120
  draw = ImageDraw.Draw(overlay)
121
 
122
  def get_temp_color(value):
123
- # Rouge pour valeurs élevées, bleu pour faibles
124
  if value > 0.8:
125
  return (255, 0, 0) # Rouge vif
126
  elif value > 0.6:
@@ -135,14 +134,12 @@ def create_heatmap_overlay(image, box, score):
135
  width = x2 - x1
136
  height = y2 - y1
137
 
138
- # Créer un effet de gradient radial
139
  steps = 30
140
  for i in range(steps):
141
  alpha = int(255 * (1 - (i / steps)) * 0.7)
142
  base_color = get_temp_color(score)
143
  color = base_color + (alpha,)
144
 
145
- # Effet radial
146
  shrink_x = (i * width) / (steps * 2)
147
  shrink_y = (i * height) / (steps * 2)
148
 
@@ -152,7 +149,6 @@ def create_heatmap_overlay(image, box, score):
152
  outline=None
153
  )
154
 
155
- # Ajouter une bordure plus visible
156
  border_color = get_temp_color(score) + (200,)
157
  draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
158
 
@@ -161,23 +157,19 @@ def create_heatmap_overlay(image, box, score):
161
  def draw_boxes(image, predictions):
162
  result_image = image.copy().convert('RGBA')
163
 
164
- # Trier les prédictions par score pour afficher les plus fortes en dernier
165
  sorted_predictions = sorted(predictions, key=lambda x: x['score'])
166
 
167
  for pred in sorted_predictions:
168
  box = pred['box']
169
  score = pred['score']
170
 
171
- # Créer et appliquer la carte thermique
172
  heatmap = create_heatmap_overlay(image, box, score)
173
  result_image = Image.alpha_composite(result_image, heatmap)
174
 
175
- # Ajouter le label avec la température
176
  draw = ImageDraw.Draw(result_image)
177
- temp = 36.5 + (score * 2.5) # Simulation de température: 36.5°C - 39°C
178
  label = f"{translate_label(pred['label'])} ({score:.1%}) • {temp:.1f}°C"
179
 
180
- # Background du texte avec dégradé
181
  text_bbox = draw.textbbox((box['xmin'], box['ymin']-25), label)
182
  padding = 3
183
  text_bbox = (
@@ -186,7 +178,6 @@ def draw_boxes(image, predictions):
186
  )
187
  draw.rectangle(text_bbox, fill="#000000CC")
188
 
189
- # Texte
190
  draw.text(
191
  (box['xmin'], box['ymin']-25),
192
  label,
@@ -216,90 +207,82 @@ def main():
216
  analyze_button = st.button("Analysieren")
217
 
218
  if uploaded_file and analyze_button:
219
- with st.spinner("Bild wird analysiert..."):
220
- image = Image.open(uploaded_file)
221
- results_container = st.container()
222
-
223
- # Récupération de toutes les prédictions d'abord
224
- predictions_watcher = models["KnochenWächter"](image)
225
- predictions_master = models["RöntgenMeister"](image)
226
- predictions_locator = models["KnochenAuge"](image)
227
-
228
- # Filtrage et traitement des résultats
229
- has_fracture = False
230
- max_fracture_score = 0
231
- filtered_locations = [p for p in predictions_locator
232
- if p['score'] >= conf_threshold
233
- and 'fracture' in p['label'].lower()]
234
-
235
- for pred in predictions_watcher:
236
- if pred['score'] >= conf_threshold and 'fracture' in pred['label'].lower():
237
- has_fracture = True
238
- max_fracture_score = max(max_fracture_score, pred['score'])
 
 
239
 
240
- # Affichage des résultats
241
- with results_container:
242
- st.write("### 🔍 Analyse Ergebnisse")
243
- col1, col2 = st.columns(2)
244
 
245
- with col1:
246
- st.write("#### 🤖 KI-Diagnose")
247
-
248
- # KnochenWächter
249
- st.write("##### 🛡️ KnochenWächter")
250
- for pred in predictions_watcher:
251
- if pred['score'] >= conf_threshold:
252
- confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
253
- label_lower = pred['label'].lower()
254
- if 'fracture' in label_lower:
255
- has_fracture = True
256
- max_fracture_score = max(max_fracture_score, pred['score'])
257
- st.markdown(f"""
258
- <div class="result-box" style="color: #1a1a1a;">
259
- <span style="color: {confidence_color}; font-weight: 500;">
260
- {pred['score']:.1%}
261
- </span> - {translate_label(pred['label'])}
262
- </div>
263
- """, unsafe_allow_html=True)
264
-
265
- # RöntgenMeister
266
- st.write("#### 🎓 RöntgenMeister")
267
- predictions_master = models["RöntgenMeister"](image)
268
- for pred in predictions_master:
269
- if pred['score'] >= conf_threshold:
270
- confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
 
 
 
 
 
271
  st.markdown(f"""
272
  <div class="result-box" style="color: #1a1a1a;">
273
- <span style="color: {confidence_color}; font-weight: 500;">
274
- {pred['score']:.1%}
275
- </span> - {translate_label(pred['label'])}
276
  </div>
277
  """, unsafe_allow_html=True)
278
 
279
- # Probabilités actualisées
280
- if max_fracture_score > 0:
281
- st.write("#### 📊 Wahrscheinlichkeit")
282
- no_fracture_prob = 1 - max_fracture_score
283
- st.markdown(f"""
284
- <div class="result-box" style="color: #1a1a1a;">
285
- Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
286
- Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
287
- </div>
288
- """, unsafe_allow_html=True)
289
-
290
- with col2:
291
- # Vérification et localisation des fractures
292
- predictions = models["KnochenAuge"](image)
293
- filtered_preds = [p for p in predictions if p['score'] >= conf_threshold
294
- and 'fracture' in p['label'].lower()]
295
-
296
- if filtered_preds:
297
- st.write("#### 🎯 Fraktur Lokalisation")
298
- result_image = draw_boxes(image, filtered_preds)
299
- st.image(result_image, use_container_width=True)
300
- else:
301
- st.write("#### 🖼️ Röntgenbild")
302
- st.image(image, use_container_width=True)
303
 
304
  if __name__ == "__main__":
305
- main()
 
120
  draw = ImageDraw.Draw(overlay)
121
 
122
  def get_temp_color(value):
 
123
  if value > 0.8:
124
  return (255, 0, 0) # Rouge vif
125
  elif value > 0.6:
 
134
  width = x2 - x1
135
  height = y2 - y1
136
 
 
137
  steps = 30
138
  for i in range(steps):
139
  alpha = int(255 * (1 - (i / steps)) * 0.7)
140
  base_color = get_temp_color(score)
141
  color = base_color + (alpha,)
142
 
 
143
  shrink_x = (i * width) / (steps * 2)
144
  shrink_y = (i * height) / (steps * 2)
145
 
 
149
  outline=None
150
  )
151
 
 
152
  border_color = get_temp_color(score) + (200,)
153
  draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
154
 
 
157
  def draw_boxes(image, predictions):
158
  result_image = image.copy().convert('RGBA')
159
 
 
160
  sorted_predictions = sorted(predictions, key=lambda x: x['score'])
161
 
162
  for pred in sorted_predictions:
163
  box = pred['box']
164
  score = pred['score']
165
 
 
166
  heatmap = create_heatmap_overlay(image, box, score)
167
  result_image = Image.alpha_composite(result_image, heatmap)
168
 
 
169
  draw = ImageDraw.Draw(result_image)
170
+ temp = 36.5 + (score * 2.5)
171
  label = f"{translate_label(pred['label'])} ({score:.1%}) • {temp:.1f}°C"
172
 
 
173
  text_bbox = draw.textbbox((box['xmin'], box['ymin']-25), label)
174
  padding = 3
175
  text_bbox = (
 
178
  )
179
  draw.rectangle(text_bbox, fill="#000000CC")
180
 
 
181
  draw.text(
182
  (box['xmin'], box['ymin']-25),
183
  label,
 
207
  analyze_button = st.button("Analysieren")
208
 
209
  if uploaded_file and analyze_button:
210
+ with st.spinner("Bild wird analysiert..."):
211
+ image = Image.open(uploaded_file)
212
+ results_container = st.container()
213
+
214
+ predictions_watcher = models["KnochenWächter"](image)
215
+ predictions_master = models["RöntgenMeister"](image)
216
+ predictions_locator = models["KnochenAuge"](image)
217
+
218
+ has_fracture = False
219
+ max_fracture_score = 0
220
+ filtered_locations = [p for p in predictions_locator
221
+ if p['score'] >= conf_threshold
222
+ and 'fracture' in p['label'].lower()]
223
+
224
+ for pred in predictions_watcher:
225
+ if pred['score'] >= conf_threshold and 'fracture' in pred['label'].lower():
226
+ has_fracture = True
227
+ max_fracture_score = max(max_fracture_score, pred['score'])
228
+
229
+ with results_container:
230
+ st.write("### 🔍 Analyse Ergebnisse")
231
+ col1, col2 = st.columns(2)
232
 
233
+ with col1:
234
+ st.write("#### 🤖 KI-Diagnose")
 
 
235
 
236
+ st.write("##### 🛡️ KnochenWächter")
237
+ for pred in predictions_watcher:
238
+ if pred['score'] >= conf_threshold:
239
+ confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
240
+ label_lower = pred['label'].lower()
241
+ if 'fracture' in label_lower:
242
+ has_fracture = True
243
+ max_fracture_score = max(max_fracture_score, pred['score'])
244
+ st.markdown(f"""
245
+ <div class="result-box" style="color: #1a1a1a;">
246
+ <span style="color: {confidence_color}; font-weight: 500;">
247
+ {pred['score']:.1%}
248
+ </span> - {translate_label(pred['label'])}
249
+ </div>
250
+ """, unsafe_allow_html=True)
251
+
252
+ st.write("#### 🎓 RöntgenMeister")
253
+ for pred in predictions_master:
254
+ if pred['score'] >= conf_threshold:
255
+ confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
256
+ st.markdown(f"""
257
+ <div class="result-box" style="color: #1a1a1a;">
258
+ <span style="color: {confidence_color}; font-weight: 500;">
259
+ {pred['score']:.1%}
260
+ </span> - {translate_label(pred['label'])}
261
+ </div>
262
+ """, unsafe_allow_html=True)
263
+
264
+ if max_fracture_score > 0:
265
+ st.write("#### 📊 Wahrscheinlichkeit")
266
+ no_fracture_prob = 1 - max_fracture_score
267
  st.markdown(f"""
268
  <div class="result-box" style="color: #1a1a1a;">
269
+ Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
270
+ Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
 
271
  </div>
272
  """, unsafe_allow_html=True)
273
 
274
+ with col2:
275
+ predictions = models["KnochenAuge"](image)
276
+ filtered_preds = [p for p in predictions if p['score'] >= conf_threshold
277
+ and 'fracture' in p['label'].lower()]
278
+
279
+ if filtered_preds:
280
+ st.write("#### 🎯 Fraktur Lokalisation")
281
+ result_image = draw_boxes(image, filtered_preds)
282
+ st.image(result_image, use_container_width=True)
283
+ else:
284
+ st.write("#### 🖼️ Röntgenbild")
285
+ st.image(image, use_container_width=True)
 
 
 
 
 
 
 
 
 
 
 
 
286
 
287
  if __name__ == "__main__":
288
+ main()