Update app.py
Browse files
app.py
CHANGED
@@ -3,66 +3,97 @@ from transformers import pipeline
|
|
3 |
from PIL import Image, ImageDraw
|
4 |
import torch
|
5 |
|
6 |
-
# Configuration de la page
|
7 |
st.set_page_config(
|
8 |
-
layout="wide",
|
9 |
page_title="Fraktur Detektion",
|
|
|
10 |
initial_sidebar_state="collapsed"
|
11 |
)
|
12 |
|
13 |
-
# Style personnalisé
|
14 |
st.markdown("""
|
15 |
<style>
|
16 |
-
/*
|
17 |
-
#MainMenu {visibility: hidden;}
|
18 |
-
footer {visibility: hidden;}
|
19 |
-
header {visibility: hidden;}
|
20 |
-
|
21 |
-
/* Style personnalisé pour la page */
|
22 |
.stApp {
|
23 |
-
|
24 |
padding: 0 !important;
|
25 |
-
|
26 |
}
|
27 |
|
28 |
-
/*
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
color:
|
33 |
-
|
34 |
-
border-radius: 0.375rem;
|
35 |
-
border: none;
|
36 |
-
font-weight: 500;
|
37 |
}
|
38 |
|
39 |
-
|
40 |
-
background-color: #
|
|
|
|
|
|
|
41 |
}
|
42 |
|
43 |
-
/*
|
44 |
.block-container {
|
45 |
-
padding:
|
46 |
max-width: 100% !important;
|
47 |
}
|
48 |
|
49 |
-
/*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
.stImage > img {
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
54 |
}
|
55 |
|
56 |
-
/*
|
57 |
-
.
|
58 |
-
padding:
|
59 |
-
margin: 1rem 0;
|
60 |
border-radius: 0.375rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
}
|
62 |
</style>
|
63 |
""", unsafe_allow_html=True)
|
64 |
|
65 |
-
# Cache des modèles
|
66 |
@st.cache_resource
|
67 |
def load_models():
|
68 |
return {
|
@@ -72,78 +103,117 @@ def load_models():
|
|
72 |
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
73 |
}
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def draw_boxes(image, predictions):
|
76 |
draw = ImageDraw.Draw(image)
|
77 |
for pred in predictions:
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
draw.rectangle(text_bbox, fill=color)
|
93 |
-
draw.text((box['xmin'], box['ymin']-15), label, fill="white")
|
94 |
-
|
95 |
return image
|
96 |
|
97 |
def main():
|
98 |
-
# Chargement des modèles
|
99 |
models = load_models()
|
100 |
-
|
101 |
-
#
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
# Analyse avec KnochenAuge
|
119 |
-
predictions = models["KnochenAuge"](image)
|
120 |
-
fractures_found = any(p['label'].lower() == 'fracture' and p['score'] > 0.6 for p in predictions)
|
121 |
-
|
122 |
-
if fractures_found:
|
123 |
-
with cols[idx % 2]:
|
124 |
-
# Créer une copie de l'image pour le dessin
|
125 |
-
result_image = image.copy()
|
126 |
-
result_image = draw_boxes(result_image, predictions)
|
127 |
-
st.image(result_image, use_column_width=True)
|
128 |
-
|
129 |
-
# Analyses supplémentaires
|
130 |
-
pred_wachter = models["KnochenWächter"](image)[0]
|
131 |
-
pred_meister = models["RöntgenMeister"](image)[0]
|
132 |
-
|
133 |
-
if pred_wachter['score'] > 0.6 or pred_meister['score'] > 0.6:
|
134 |
-
st.markdown(
|
135 |
-
f"""
|
136 |
-
<div style='background-color: #1F2937; color: white; padding: 1rem; border-radius: 0.375rem;'>
|
137 |
-
<div style='margin-bottom: 0.5rem;'>
|
138 |
-
<span style='color: #60A5FA;'>KnochenWächter:</span> {pred_wachter['score']:.1%}
|
139 |
-
</div>
|
140 |
-
<div>
|
141 |
-
<span style='color: #60A5FA;'>RöntgenMeister:</span> {pred_meister['score']:.1%}
|
142 |
-
</div>
|
143 |
-
</div>
|
144 |
-
""",
|
145 |
-
unsafe_allow_html=True
|
146 |
-
)
|
147 |
|
148 |
if __name__ == "__main__":
|
149 |
main()
|
|
|
3 |
from PIL import Image, ImageDraw
|
4 |
import torch
|
5 |
|
|
|
6 |
st.set_page_config(
|
|
|
7 |
page_title="Fraktur Detektion",
|
8 |
+
layout="wide",
|
9 |
initial_sidebar_state="collapsed"
|
10 |
)
|
11 |
|
|
|
12 |
st.markdown("""
|
13 |
<style>
|
14 |
+
/* Reset et base */
|
|
|
|
|
|
|
|
|
|
|
15 |
.stApp {
|
16 |
+
background-color: var(--background-color) !important;
|
17 |
padding: 0 !important;
|
18 |
+
overflow: hidden !important;
|
19 |
}
|
20 |
|
21 |
+
/* Variables de thème */
|
22 |
+
[data-theme="light"] {
|
23 |
+
--background-color: #ffffff;
|
24 |
+
--text-color: #1f2937;
|
25 |
+
--border-color: #e5e7eb;
|
26 |
+
--secondary-bg: #f3f4f6;
|
|
|
|
|
|
|
27 |
}
|
28 |
|
29 |
+
[data-theme="dark"] {
|
30 |
+
--background-color: #1f2937;
|
31 |
+
--text-color: #f3f4f6;
|
32 |
+
--border-color: #4b5563;
|
33 |
+
--secondary-bg: #374151;
|
34 |
}
|
35 |
|
36 |
+
/* Layout principal */
|
37 |
.block-container {
|
38 |
+
padding: 0.5rem !important;
|
39 |
max-width: 100% !important;
|
40 |
}
|
41 |
|
42 |
+
/* Contrôles et upload */
|
43 |
+
.uploadedFile {
|
44 |
+
border: 1px dashed var(--border-color);
|
45 |
+
border-radius: 0.375rem;
|
46 |
+
padding: 0.25rem;
|
47 |
+
background: var(--secondary-bg);
|
48 |
+
}
|
49 |
+
|
50 |
+
/* Ajustement des colonnes */
|
51 |
+
[data-testid="column"] {
|
52 |
+
padding: 0 0.5rem !important;
|
53 |
+
}
|
54 |
+
|
55 |
+
/* Images adaptatives */
|
56 |
.stImage > img {
|
57 |
+
width: 100% !important;
|
58 |
+
height: auto !important;
|
59 |
+
max-height: 400px !important;
|
60 |
+
object-fit: contain !important;
|
61 |
}
|
62 |
|
63 |
+
/* Résultats */
|
64 |
+
.result-box {
|
65 |
+
padding: 0.375rem;
|
|
|
66 |
border-radius: 0.375rem;
|
67 |
+
margin: 0.25rem 0;
|
68 |
+
background: var(--secondary-bg);
|
69 |
+
border: 1px solid var(--border-color);
|
70 |
+
color: var(--text-color);
|
71 |
+
}
|
72 |
+
|
73 |
+
/* Titres */
|
74 |
+
h2, h3 {
|
75 |
+
margin: 0 !important;
|
76 |
+
padding: 0.5rem 0 !important;
|
77 |
+
font-size: 1rem !important;
|
78 |
+
color: var(--text-color) !important;
|
79 |
+
}
|
80 |
+
|
81 |
+
/* Nettoyage des éléments inutiles */
|
82 |
+
#MainMenu, footer, header, .viewerBadge_container__1QSob, .stDeployButton {
|
83 |
+
display: none !important;
|
84 |
+
}
|
85 |
+
|
86 |
+
/* Ajustements espacement */
|
87 |
+
div[data-testid="stVerticalBlock"] {
|
88 |
+
gap: 0.5rem !important;
|
89 |
+
}
|
90 |
+
|
91 |
+
.element-container {
|
92 |
+
margin: 0.25rem 0 !important;
|
93 |
}
|
94 |
</style>
|
95 |
""", unsafe_allow_html=True)
|
96 |
|
|
|
97 |
@st.cache_resource
|
98 |
def load_models():
|
99 |
return {
|
|
|
103 |
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
104 |
}
|
105 |
|
106 |
+
def translate_label(label):
|
107 |
+
translations = {
|
108 |
+
"fracture": "Knochenbruch",
|
109 |
+
"no fracture": "Kein Bruch",
|
110 |
+
"normal": "Normal",
|
111 |
+
"abnormal": "Auffällig"
|
112 |
+
}
|
113 |
+
return translations.get(label.lower(), label)
|
114 |
+
|
115 |
def draw_boxes(image, predictions):
|
116 |
draw = ImageDraw.Draw(image)
|
117 |
for pred in predictions:
|
118 |
+
box = pred['box']
|
119 |
+
label = f"{translate_label(pred['label'])} ({pred['score']:.2%})"
|
120 |
+
color = "#2563eb" if pred['score'] > 0.7 else "#eab308"
|
121 |
+
|
122 |
+
draw.rectangle(
|
123 |
+
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
124 |
+
outline=color,
|
125 |
+
width=2
|
126 |
+
)
|
127 |
+
|
128 |
+
# Label plus compact
|
129 |
+
text_bbox = draw.textbbox((box['xmin'], box['ymin']-15), label)
|
130 |
+
draw.rectangle(text_bbox, fill=color)
|
131 |
+
draw.text((box['xmin'], box['ymin']-15), label, fill="white")
|
|
|
|
|
|
|
132 |
return image
|
133 |
|
134 |
def main():
|
|
|
135 |
models = load_models()
|
136 |
+
|
137 |
+
# Disposition en deux colonnes principales
|
138 |
+
col1, col2 = st.columns([1, 2])
|
139 |
+
|
140 |
+
with col1:
|
141 |
+
st.markdown("### 📤 Röntgenbild Upload")
|
142 |
+
uploaded_file = st.file_uploader("", type=['png', 'jpg', 'jpeg'])
|
143 |
+
|
144 |
+
if uploaded_file:
|
145 |
+
conf_threshold = st.slider(
|
146 |
+
"Konfidenzschwelle",
|
147 |
+
min_value=0.0, max_value=1.0,
|
148 |
+
value=0.60, step=0.05
|
149 |
+
)
|
150 |
+
|
151 |
+
with col2:
|
152 |
+
if uploaded_file:
|
153 |
+
image = Image.open(uploaded_file)
|
154 |
+
|
155 |
+
st.markdown("### 🔍 Meinung der KI-Experten")
|
156 |
+
|
157 |
+
# Analyse avec KnochenAuge (localisierung)
|
158 |
+
st.markdown("#### 👁️ Das KnochenAuge - Lokalisation")
|
159 |
+
predictions = models["KnochenAuge"](image)
|
160 |
+
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
|
161 |
+
|
162 |
+
if filtered_preds:
|
163 |
+
result_image = image.copy()
|
164 |
+
result_image = draw_boxes(result_image, filtered_preds)
|
165 |
+
st.image(result_image, use_container_width=True)
|
166 |
+
|
167 |
+
# Autres modèles
|
168 |
+
st.markdown("#### 🎯 KI-Analyse")
|
169 |
+
col_left, col_right = st.columns(2)
|
170 |
+
|
171 |
+
with col_left:
|
172 |
+
st.markdown("**🛡️ Der KnochenWächter**")
|
173 |
+
predictions = models["KnochenWächter"](image)
|
174 |
+
for pred in predictions:
|
175 |
+
if pred['score'] >= conf_threshold:
|
176 |
+
score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
|
177 |
+
st.markdown(f"""
|
178 |
+
<div class='result-box'>
|
179 |
+
<span style='color: {score_color}; font-weight: 500;'>
|
180 |
+
{pred['score']:.1%}
|
181 |
+
</span> - {translate_label(pred['label'])}
|
182 |
+
</div>
|
183 |
+
""", unsafe_allow_html=True)
|
184 |
+
|
185 |
+
with col_right:
|
186 |
+
st.markdown("**🎓 Der RöntgenMeister**")
|
187 |
+
predictions = models["RöntgenMeister"](image)
|
188 |
+
for pred in predictions:
|
189 |
+
if pred['score'] >= conf_threshold:
|
190 |
+
score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
|
191 |
+
st.markdown(f"""
|
192 |
+
<div class='result-box'>
|
193 |
+
<span style='color: {score_color}; font-weight: 500;'>
|
194 |
+
{pred['score']:.1%}
|
195 |
+
</span> - {translate_label(pred['label'])}
|
196 |
+
</div>
|
197 |
+
""", unsafe_allow_html=True)
|
198 |
+
else:
|
199 |
+
st.info("Bitte laden Sie ein Röntgenbild hoch (JPEG, PNG)")
|
200 |
+
|
201 |
+
# Script pour la synchronisation du thème
|
202 |
+
st.markdown("""
|
203 |
+
<script>
|
204 |
+
function updateTheme(isDark) {
|
205 |
+
document.documentElement.setAttribute('data-theme', isDark ? 'dark' : 'light');
|
206 |
+
}
|
207 |
+
|
208 |
+
window.addEventListener('message', function(e) {
|
209 |
+
if (e.data.type === 'theme-change') {
|
210 |
+
updateTheme(e.data.theme === 'dark');
|
211 |
+
}
|
212 |
+
});
|
213 |
|
214 |
+
updateTheme(window.matchMedia('(prefers-color-scheme: dark)').matches);
|
215 |
+
</script>
|
216 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
if __name__ == "__main__":
|
219 |
main()
|