yassonee commited on
Commit
592f7b3
·
verified ·
1 Parent(s): 5ac2c17

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +149 -166
app.py CHANGED
@@ -2,81 +2,14 @@ import streamlit as st
2
  from transformers import pipeline
3
  from PIL import Image, ImageDraw
4
  import numpy as np
 
5
 
6
- # Script pour intercepter et désactiver les WebSockets avant le chargement de l'application
7
- st.markdown("""
8
- <!DOCTYPE html>
9
- <html>
10
- <head>
11
- <script>
12
- // Exécution immédiate avant tout autre script
13
- (function() {
14
- if (navigator.userAgent.indexOf("Edge") > -1) {
15
- // Intercepter toutes les requêtes WebSocket avant leur création
16
- const OriginalWebSocket = window.WebSocket;
17
- const storedWS = [];
18
-
19
- window.WebSocket = function(url) {
20
- if (url.includes('_stcore/stream')) {
21
- return {
22
- send: function() {},
23
- close: function() {},
24
- addEventListener: function(event, callback) {
25
- if (event === 'open') {
26
- setTimeout(callback, 100);
27
- }
28
- },
29
- removeEventListener: function() {}
30
- };
31
- }
32
- const ws = new OriginalWebSocket(url);
33
- storedWS.push(ws);
34
- return ws;
35
- };
36
-
37
- // Supprimer les messages d'erreur
38
- const originalConsoleError = console.error;
39
- console.error = function(msg) {
40
- if (typeof msg === 'string' && (msg.includes('WebSocket') || msg.includes('Failed to connect'))) {
41
- return;
42
- }
43
- originalConsoleError.apply(console, arguments);
44
- };
45
-
46
- // Message pour les utilisateurs Edge
47
- window.addEventListener('load', function() {
48
- const notice = document.createElement('div');
49
- notice.style.cssText = `
50
- position: fixed;
51
- top: 10px;
52
- left: 50%;
53
- transform: translateX(-50%);
54
- background: #ffeb3b;
55
- color: #000;
56
- padding: 10px 20px;
57
- border-radius: 5px;
58
- z-index: 999999;
59
- box-shadow: 0 2px 4px rgba(0,0,0,0.2);
60
- font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif;
61
- `;
62
- notice.innerHTML = '⚠️ Für die beste Erfahrung verwenden Sie bitte Chrome, Firefox oder Safari.';
63
- document.body.appendChild(notice);
64
- });
65
- }
66
- })();
67
- </script>
68
- </head>
69
- </html>
70
- """, unsafe_allow_html=True)
71
-
72
- # Configuration de la page
73
  st.set_page_config(
74
  page_title="Fraktur Detektion",
75
  layout="wide",
76
  initial_sidebar_state="collapsed"
77
  )
78
 
79
- # Styles CSS
80
  st.markdown("""
81
  <style>
82
  .stApp {
@@ -84,8 +17,25 @@ st.markdown("""
84
  }
85
 
86
  .block-container {
 
 
87
  max-width: 1400px !important;
88
- padding: 1rem !important;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  }
90
 
91
  .result-box {
@@ -96,30 +46,54 @@ st.markdown("""
96
  border: 1px solid #e9ecef;
97
  }
98
 
99
- #MainMenu, footer, header, [data-testid="stToolbar"] {
100
- display: none !important;
 
101
  }
102
 
103
- .streamlit-expanderContent {
104
- display: none !important;
 
 
 
105
  }
106
 
107
- .element-container:has(>.stAlert) {
108
- display: none !important;
 
 
 
109
  }
110
-
111
- @supports (-ms-ime-align:auto) {
112
- /* Fixes spécifiques pour Edge */
113
- .stApp { opacity: 1 !important; }
114
- iframe { visibility: visible !important; }
115
- .element-container { opacity: 1 !important; }
116
- div[data-testid="stStatusWidget"] { display: none !important; }
117
- div[data-baseweb="notification"] { display: none !important; }
118
  }
119
-
120
- /* Pour masquer les erreurs de connexion */
121
- [data-testid="stStatusWidget"],
122
- [data-testid="stEventMessage"] {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
  display: none !important;
124
  }
125
  </style>
@@ -152,17 +126,21 @@ def create_heatmap_overlay(image, box, score):
152
  x1, y1 = box['xmin'], box['ymin']
153
  x2, y2 = box['xmax'], box['ymax']
154
 
 
155
  if score > 0.8:
156
- fill_color = (255, 0, 0, 100)
157
  border_color = (255, 0, 0, 255)
158
  elif score > 0.6:
159
- fill_color = (255, 165, 0, 100)
160
  border_color = (255, 165, 0, 255)
161
  else:
162
- fill_color = (255, 255, 0, 100)
163
  border_color = (255, 255, 0, 255)
164
 
 
165
  draw.rectangle([x1, y1, x2, y2], fill=fill_color)
 
 
166
  draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
167
 
168
  return overlay
@@ -174,16 +152,20 @@ def draw_boxes(image, predictions):
174
  box = pred['box']
175
  score = pred['score']
176
 
 
177
  overlay = create_heatmap_overlay(image, box, score)
178
  result_image = Image.alpha_composite(result_image, overlay)
179
 
 
180
  draw = ImageDraw.Draw(result_image)
181
  temp = 36.5 + (score * 2.5)
182
  label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)"
183
 
 
184
  text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
185
  draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
186
 
 
187
  draw.text(
188
  (box['xmin'], box['ymin']-20),
189
  label,
@@ -193,8 +175,9 @@ def draw_boxes(image, predictions):
193
  return result_image
194
 
195
  def main():
196
- try:
197
- # Chargement des modèles
 
198
  st.write("### 📤 Röntgenbild hochladen")
199
  uploaded_file = st.file_uploader("Bild auswählen", type=['png', 'jpg', 'jpeg'], label_visibility="collapsed")
200
 
@@ -209,83 +192,83 @@ def main():
209
  with col2:
210
  analyze_button = st.button("Analysieren")
211
 
212
- if uploaded_file and analyze_button:
213
- with st.spinner("Bild wird analysiert..."):
214
- image = Image.open(uploaded_file)
215
- results_container = st.container()
216
-
217
- models = load_models()
218
- predictions_watcher = models["KnochenWächter"](image)
219
- predictions_master = models["RöntgenMeister"](image)
220
- predictions_locator = models["KnochenAuge"](image)
221
-
222
- has_fracture = False
223
- max_fracture_score = 0
224
- filtered_locations = [p for p in predictions_locator
225
- if p['score'] >= conf_threshold]
 
 
 
 
 
 
 
 
226
 
227
- for pred in predictions_watcher:
228
- if pred['score'] >= conf_threshold and 'fracture' in pred['label'].lower():
229
- has_fracture = True
230
- max_fracture_score = max(max_fracture_score, pred['score'])
231
-
232
- with results_container:
233
- st.write("### 🔍 Analyse Ergebnisse")
234
- col1, col2 = st.columns(2)
 
 
 
 
 
 
 
 
 
 
 
 
235
 
236
- with col1:
237
- st.write("#### 🤖 KI-Diagnose")
238
-
239
- st.markdown("#### 🛡️ KnochenWächter")
240
- for pred in predictions_watcher:
241
- confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
242
- label_lower = pred['label'].lower()
243
- if pred['score'] >= conf_threshold and 'fracture' in label_lower:
244
- has_fracture = True
245
- max_fracture_score = max(max_fracture_score, pred['score'])
246
- st.markdown(f"""
247
- <div class="result-box">
248
- <span style="color: {confidence_color}; font-weight: 500;">
249
- {pred['score']:.1%}
250
- </span> - {translate_label(pred['label'])}
251
- </div>
252
- """, unsafe_allow_html=True)
253
-
254
- st.markdown("#### 🎓 RöntgenMeister")
255
- for pred in predictions_master:
256
- confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
257
- st.markdown(f"""
258
- <div class="result-box">
259
- <span style="color: {confidence_color}; font-weight: 500;">
260
- {pred['score']:.1%}
261
- </span> - {translate_label(pred['label'])}
262
- </div>
263
- """, unsafe_allow_html=True)
264
-
265
- if max_fracture_score > 0:
266
- st.write("#### 📊 Wahrscheinlichkeit")
267
- no_fracture_prob = 1 - max_fracture_score
268
- st.markdown(f"""
269
- <div class="result-box">
270
- Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
271
- Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
272
- </div>
273
- """, unsafe_allow_html=True)
274
 
275
- with col2:
276
- predictions = models["KnochenAuge"](image)
277
- filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
278
-
279
- if filtered_preds:
280
- st.write("#### 🎯 Fraktur Lokalisation")
281
- result_image = draw_boxes(image, filtered_preds)
282
- st.image(result_image, use_container_width=True)
283
- else:
284
- st.write("#### 🖼️ Röntgenbild")
285
- st.image(image, use_container_width=True)
286
-
287
- except Exception as e:
288
- st.error(f"Ein Fehler ist aufgetreten: {str(e)}")
289
 
290
  if __name__ == "__main__":
291
  main()
 
2
  from transformers import pipeline
3
  from PIL import Image, ImageDraw
4
  import numpy as np
5
+ import colorsys
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  st.set_page_config(
8
  page_title="Fraktur Detektion",
9
  layout="wide",
10
  initial_sidebar_state="collapsed"
11
  )
12
 
 
13
  st.markdown("""
14
  <style>
15
  .stApp {
 
17
  }
18
 
19
  .block-container {
20
+ padding-top: 0 !important;
21
+ padding-bottom: 0 !important;
22
  max-width: 1400px !important;
23
+ }
24
+
25
+ .upload-container {
26
+ background: white;
27
+ padding: 1.5rem;
28
+ border-radius: 10px;
29
+ box-shadow: 0 2px 4px rgba(0,0,0,0.1);
30
+ margin-bottom: 1rem;
31
+ text-align: center;
32
+ }
33
+
34
+ .results-container {
35
+ background: white;
36
+ padding: 1.5rem;
37
+ border-radius: 10px;
38
+ box-shadow: 0 2px 4px rgba(0,0,0,0.1);
39
  }
40
 
41
  .result-box {
 
46
  border: 1px solid #e9ecef;
47
  }
48
 
49
+ h1, h2, h3, h4, p {
50
+ color: #1a1a1a !important;
51
+ margin: 0.5rem 0 !important;
52
  }
53
 
54
+ .stImage {
55
+ background: white;
56
+ padding: 0.5rem;
57
+ border-radius: 8px;
58
+ box-shadow: 0 1px 3px rgba(0,0,0,0.1);
59
  }
60
 
61
+ .stImage > img {
62
+ max-height: 300px !important;
63
+ width: auto !important;
64
+ margin: 0 auto !important;
65
+ display: block !important;
66
  }
67
+
68
+ [data-testid="stFileUploader"] {
69
+ width: 100% !important;
 
 
 
 
 
70
  }
71
+
72
+ .stFileUploaderFileName {
73
+ color: #1a1a1a !important;
74
+ }
75
+
76
+ .stButton > button {
77
+ width: 200px;
78
+ background-color: #f8f9fa !important;
79
+ color: #1a1a1a !important;
80
+ border: 1px solid #e9ecef !important;
81
+ padding: 0.5rem 1rem !important;
82
+ border-radius: 5px !important;
83
+ transition: all 0.3s ease !important;
84
+ }
85
+
86
+ .stButton > button:hover {
87
+ background-color: #e9ecef !important;
88
+ transform: translateY(-1px);
89
+ }
90
+
91
+ #MainMenu, footer, header, [data-testid="stToolbar"] {
92
+ display: none !important;
93
+ }
94
+
95
+ /* Hide deprecation warning */
96
+ [data-testid="stExpander"], .element-container:has(>.stAlert) {
97
  display: none !important;
98
  }
99
  </style>
 
126
  x1, y1 = box['xmin'], box['ymin']
127
  x2, y2 = box['xmax'], box['ymax']
128
 
129
+ # Couleur basée sur le score
130
  if score > 0.8:
131
+ fill_color = (255, 0, 0, 100) # Rouge
132
  border_color = (255, 0, 0, 255)
133
  elif score > 0.6:
134
+ fill_color = (255, 165, 0, 100) # Orange
135
  border_color = (255, 165, 0, 255)
136
  else:
137
+ fill_color = (255, 255, 0, 100) # Jaune
138
  border_color = (255, 255, 0, 255)
139
 
140
+ # Rectangle semi-transparent
141
  draw.rectangle([x1, y1, x2, y2], fill=fill_color)
142
+
143
+ # Bordure
144
  draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
145
 
146
  return overlay
 
152
  box = pred['box']
153
  score = pred['score']
154
 
155
+ # Création de l'overlay
156
  overlay = create_heatmap_overlay(image, box, score)
157
  result_image = Image.alpha_composite(result_image, overlay)
158
 
159
+ # Ajout du texte
160
  draw = ImageDraw.Draw(result_image)
161
  temp = 36.5 + (score * 2.5)
162
  label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)"
163
 
164
+ # Fond noir pour le texte
165
  text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
166
  draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
167
 
168
+ # Texte en blanc
169
  draw.text(
170
  (box['xmin'], box['ymin']-20),
171
  label,
 
175
  return result_image
176
 
177
  def main():
178
+ models = load_models()
179
+
180
+ with st.container():
181
  st.write("### 📤 Röntgenbild hochladen")
182
  uploaded_file = st.file_uploader("Bild auswählen", type=['png', 'jpg', 'jpeg'], label_visibility="collapsed")
183
 
 
192
  with col2:
193
  analyze_button = st.button("Analysieren")
194
 
195
+ if uploaded_file and analyze_button:
196
+ with st.spinner("Bild wird analysiert..."):
197
+ image = Image.open(uploaded_file)
198
+ results_container = st.container()
199
+
200
+ predictions_watcher = models["KnochenWächter"](image)
201
+ predictions_master = models["RöntgenMeister"](image)
202
+ predictions_locator = models["KnochenAuge"](image)
203
+
204
+ has_fracture = False
205
+ max_fracture_score = 0
206
+ filtered_locations = [p for p in predictions_locator
207
+ if p['score'] >= conf_threshold]
208
+
209
+ for pred in predictions_watcher:
210
+ if pred['score'] >= conf_threshold and 'fracture' in pred['label'].lower():
211
+ has_fracture = True
212
+ max_fracture_score = max(max_fracture_score, pred['score'])
213
+
214
+ with results_container:
215
+ st.write("### 🔍 Analyse Ergebnisse")
216
+ col1, col2 = st.columns(2)
217
 
218
+ with col1:
219
+ st.write("#### 🤖 KI-Diagnose")
220
+
221
+ st.markdown("#### 🛡️ KnochenWächter")
222
+ # Afficher tous les résultats de KnochenWächter
223
+ for pred in predictions_watcher:
224
+ confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
225
+ label_lower = pred['label'].lower()
226
+ # Mettre à jour max_fracture_score seulement pour les fractures
227
+ if pred['score'] >= conf_threshold and 'fracture' in label_lower:
228
+ has_fracture = True
229
+ max_fracture_score = max(max_fracture_score, pred['score'])
230
+ # Afficher tous les résultats
231
+ st.markdown(f"""
232
+ <div class="result-box" style="color: #1a1a1a;">
233
+ <span style="color: {confidence_color}; font-weight: 500;">
234
+ {pred['score']:.1%}
235
+ </span> - {translate_label(pred['label'])}
236
+ </div>
237
+ """, unsafe_allow_html=True)
238
 
239
+ st.markdown("#### 🎓 RöntgenMeister")
240
+ # Afficher tous les résultats de RöntgenMeister
241
+ for pred in predictions_master:
242
+ confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
243
+ st.markdown(f"""
244
+ <div class="result-box" style="color: #1a1a1a;">
245
+ <span style="color: {confidence_color}; font-weight: 500;">
246
+ {pred['score']:.1%}
247
+ </span> - {translate_label(pred['label'])}
248
+ </div>
249
+ """, unsafe_allow_html=True)
250
+
251
+ if max_fracture_score > 0:
252
+ st.write("#### 📊 Wahrscheinlichkeit")
253
+ no_fracture_prob = 1 - max_fracture_score
254
+ st.markdown(f"""
255
+ <div class="result-box" style="color: #1a1a1a;">
256
+ Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
257
+ Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
258
+ </div>
259
+ """, unsafe_allow_html=True)
260
+
261
+ with col2:
262
+ predictions = models["KnochenAuge"](image)
263
+ filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
 
 
 
 
 
 
 
 
 
 
 
 
 
264
 
265
+ if filtered_preds:
266
+ st.write("#### 🎯 Fraktur Lokalisation")
267
+ result_image = draw_boxes(image, filtered_preds)
268
+ st.image(result_image, use_container_width=True)
269
+ else:
270
+ st.write("#### 🖼️ Röntgenbild")
271
+ st.image(image, use_container_width=True)
 
 
 
 
 
 
 
272
 
273
  if __name__ == "__main__":
274
  main()