Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image, ImageDraw
|
4 |
-
import
|
|
|
|
|
5 |
|
6 |
st.set_page_config(
|
7 |
page_title="Fraktur Detektion",
|
@@ -11,34 +13,37 @@ st.set_page_config(
|
|
11 |
|
12 |
st.markdown("""
|
13 |
<style>
|
14 |
-
/* Base styles */
|
15 |
.stApp {
|
16 |
background: #f0f2f5 !important;
|
17 |
}
|
18 |
|
19 |
.block-container {
|
20 |
-
padding:
|
|
|
21 |
max-width: 1400px !important;
|
22 |
margin: 0 auto !important;
|
23 |
}
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
27 |
background: white;
|
28 |
-
padding: 2rem;
|
29 |
border-radius: 10px;
|
30 |
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
31 |
-
margin
|
32 |
-
text-align: center;
|
33 |
}
|
34 |
|
35 |
-
.
|
36 |
-
|
37 |
-
padding:
|
38 |
-
border-radius:
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
}
|
43 |
|
44 |
.result-box {
|
@@ -49,13 +54,11 @@ st.markdown("""
|
|
49 |
border: 1px solid #e9ecef;
|
50 |
}
|
51 |
|
52 |
-
/* Text styles */
|
53 |
h1, h2, h3, h4, p {
|
54 |
color: #1a1a1a !important;
|
55 |
margin: 0.5rem 0 !important;
|
56 |
}
|
57 |
|
58 |
-
/* Image styles */
|
59 |
.stImage {
|
60 |
background: white;
|
61 |
padding: 0.5rem;
|
@@ -64,38 +67,18 @@ st.markdown("""
|
|
64 |
}
|
65 |
|
66 |
.stImage > img {
|
67 |
-
max-height:
|
68 |
width: auto !important;
|
69 |
margin: 0 auto !important;
|
70 |
display: block !important;
|
71 |
}
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
from {
|
76 |
-
opacity: 0;
|
77 |
-
transform: translateY(-10px);
|
78 |
-
}
|
79 |
-
to {
|
80 |
-
opacity: 1;
|
81 |
-
transform: translateY(0);
|
82 |
-
}
|
83 |
-
}
|
84 |
-
|
85 |
-
/* Hide unnecessary elements */
|
86 |
-
#MainMenu, footer {
|
87 |
-
display: none !important;
|
88 |
-
}
|
89 |
-
|
90 |
-
/* Custom columns spacing */
|
91 |
-
[data-testid="column"] {
|
92 |
-
padding: 0.5rem !important;
|
93 |
-
background: transparent !important;
|
94 |
}
|
95 |
|
96 |
-
/* Button styling */
|
97 |
.stButton > button {
|
98 |
-
width:
|
99 |
background-color: #0066cc !important;
|
100 |
color: white !important;
|
101 |
border: none !important;
|
@@ -108,6 +91,19 @@ st.markdown("""
|
|
108 |
background-color: #0052a3 !important;
|
109 |
transform: translateY(-1px);
|
110 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
</style>
|
112 |
""", unsafe_allow_html=True)
|
113 |
|
@@ -125,109 +121,148 @@ def translate_label(label):
|
|
125 |
"fracture": "Knochenbruch",
|
126 |
"no fracture": "Kein Bruch",
|
127 |
"normal": "Normal",
|
128 |
-
"abnormal": "Auffällig"
|
|
|
|
|
129 |
}
|
130 |
return translations.get(label.lower(), label)
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
def draw_boxes(image, predictions):
|
133 |
-
|
|
|
|
|
134 |
for pred in predictions:
|
135 |
box = pred['box']
|
136 |
-
|
137 |
-
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
draw.rectangle(
|
140 |
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
141 |
-
outline=
|
142 |
width=2
|
143 |
)
|
144 |
|
145 |
-
|
146 |
-
draw.
|
147 |
-
draw.
|
148 |
-
|
|
|
|
|
149 |
|
150 |
def main():
|
151 |
models = load_models()
|
152 |
|
153 |
-
#
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
st.markdown("### 📤 Röntgenbild Upload")
|
156 |
-
|
157 |
|
158 |
conf_threshold = st.slider(
|
159 |
"Konfidenzschwelle",
|
160 |
min_value=0.0, max_value=1.0,
|
161 |
-
value=0.60, step=0.05
|
162 |
-
key='confidence'
|
163 |
)
|
164 |
|
165 |
-
analyze_button = st.button("Analysieren"
|
166 |
st.markdown('</div>', unsafe_allow_html=True)
|
167 |
-
|
168 |
-
#
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
col1, col2, col3 = st.columns(3)
|
178 |
-
|
179 |
-
# Column 1: Original Image
|
180 |
-
with col1:
|
181 |
-
st.markdown("### 🖼️ Original")
|
182 |
-
st.image(image, use_column_width=True)
|
183 |
|
184 |
-
#
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
{pred['score']:.1%}
|
197 |
-
</span> - {translate_label(pred['label'])}
|
198 |
-
</div>
|
199 |
-
""", unsafe_allow_html=True)
|
200 |
-
|
201 |
-
# RöntgenMeister results
|
202 |
-
predictions = models["RöntgenMeister"](image)
|
203 |
-
st.markdown("#### 🎓 RöntgenMeister")
|
204 |
-
for pred in predictions:
|
205 |
-
if pred['score'] >= conf_threshold:
|
206 |
-
st.markdown(f"""
|
207 |
-
<div class="result-box">
|
208 |
-
<span style='color: {"#0066cc" if pred["score"] > 0.7 else "#ffa500"}; font-weight: 500;'>
|
209 |
-
{pred['score']:.1%}
|
210 |
-
</span> - {translate_label(pred['label'])}
|
211 |
-
</div>
|
212 |
-
""", unsafe_allow_html=True)
|
213 |
|
214 |
-
#
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
result_image = image.copy()
|
227 |
-
result_image = draw_boxes(result_image, filtered_preds)
|
228 |
-
st.image(result_image, use_column_width=True)
|
229 |
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
if __name__ == "__main__":
|
233 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image, ImageDraw
|
4 |
+
import numpy as np
|
5 |
+
from PIL import ImageColor
|
6 |
+
import colorsys
|
7 |
|
8 |
st.set_page_config(
|
9 |
page_title="Fraktur Detektion",
|
|
|
13 |
|
14 |
st.markdown("""
|
15 |
<style>
|
|
|
16 |
.stApp {
|
17 |
background: #f0f2f5 !important;
|
18 |
}
|
19 |
|
20 |
.block-container {
|
21 |
+
padding-top: 0 !important;
|
22 |
+
padding-bottom: 0 !important;
|
23 |
max-width: 1400px !important;
|
24 |
margin: 0 auto !important;
|
25 |
}
|
26 |
|
27 |
+
.main-container {
|
28 |
+
display: flex;
|
29 |
+
gap: 1rem;
|
30 |
+
padding: 1rem;
|
31 |
background: white;
|
|
|
32 |
border-radius: 10px;
|
33 |
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
34 |
+
margin: 1rem;
|
|
|
35 |
}
|
36 |
|
37 |
+
.upload-section {
|
38 |
+
flex: 1;
|
39 |
+
padding: 1rem;
|
40 |
+
border-radius: 8px;
|
41 |
+
background: #f8f9fa;
|
42 |
+
}
|
43 |
+
|
44 |
+
.result-section {
|
45 |
+
flex: 2;
|
46 |
+
padding: 1rem;
|
47 |
}
|
48 |
|
49 |
.result-box {
|
|
|
54 |
border: 1px solid #e9ecef;
|
55 |
}
|
56 |
|
|
|
57 |
h1, h2, h3, h4, p {
|
58 |
color: #1a1a1a !important;
|
59 |
margin: 0.5rem 0 !important;
|
60 |
}
|
61 |
|
|
|
62 |
.stImage {
|
63 |
background: white;
|
64 |
padding: 0.5rem;
|
|
|
67 |
}
|
68 |
|
69 |
.stImage > img {
|
70 |
+
max-height: 300px !important;
|
71 |
width: auto !important;
|
72 |
margin: 0 auto !important;
|
73 |
display: block !important;
|
74 |
}
|
75 |
|
76 |
+
[data-testid="stFileUploader"] {
|
77 |
+
width: 100% !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
}
|
79 |
|
|
|
80 |
.stButton > button {
|
81 |
+
width: 100%;
|
82 |
background-color: #0066cc !important;
|
83 |
color: white !important;
|
84 |
border: none !important;
|
|
|
91 |
background-color: #0052a3 !important;
|
92 |
transform: translateY(-1px);
|
93 |
}
|
94 |
+
|
95 |
+
#MainMenu, footer, header {
|
96 |
+
display: none !important;
|
97 |
+
}
|
98 |
+
|
99 |
+
/* Hide deprecation warning */
|
100 |
+
[data-testid="stExpander"] {
|
101 |
+
display: none !important;
|
102 |
+
}
|
103 |
+
|
104 |
+
.element-container:has(>.stAlert) {
|
105 |
+
display: none !important;
|
106 |
+
}
|
107 |
</style>
|
108 |
""", unsafe_allow_html=True)
|
109 |
|
|
|
121 |
"fracture": "Knochenbruch",
|
122 |
"no fracture": "Kein Bruch",
|
123 |
"normal": "Normal",
|
124 |
+
"abnormal": "Auffällig",
|
125 |
+
"F1": "Knochenbruch",
|
126 |
+
"NF": "Kein Bruch"
|
127 |
}
|
128 |
return translations.get(label.lower(), label)
|
129 |
|
130 |
+
def create_heatmap_overlay(image, box, score):
|
131 |
+
overlay = Image.new('RGBA', image.size, (0, 0, 0, 0))
|
132 |
+
draw = ImageDraw.Draw(overlay)
|
133 |
+
|
134 |
+
# Create gradient colors based on confidence
|
135 |
+
def get_heatmap_color(value):
|
136 |
+
# Convert to HSV for better control
|
137 |
+
hue = (1 - value) * 0.3 # 0.3 = reddish, 0 = red
|
138 |
+
saturation = 0.8
|
139 |
+
value = 0.9
|
140 |
+
# Convert back to RGB
|
141 |
+
rgb = colorsys.hsv_to_rgb(hue, saturation, value)
|
142 |
+
return tuple(int(x * 255) for x in rgb)
|
143 |
+
|
144 |
+
# Draw the heatmap with gradient
|
145 |
+
x1, y1 = box['xmin'], box['ymin']
|
146 |
+
x2, y2 = box['xmax'], box['ymax']
|
147 |
+
|
148 |
+
steps = 20
|
149 |
+
for i in range(steps):
|
150 |
+
alpha = int(255 * (1 - i/steps) * 0.6) # Gradient transparency
|
151 |
+
color = get_heatmap_color(score)
|
152 |
+
rect_color = color + (alpha,)
|
153 |
+
|
154 |
+
# Create shrinking rectangles for gradient effect
|
155 |
+
shrink = i * ((x2-x1)/(steps*2))
|
156 |
+
draw.rectangle([x1+shrink, y1+shrink, x2-shrink, y2-shrink],
|
157 |
+
fill=rect_color)
|
158 |
+
|
159 |
+
return overlay
|
160 |
+
|
161 |
def draw_boxes(image, predictions):
|
162 |
+
# Create a copy of the image to work with
|
163 |
+
result_image = image.copy().convert('RGBA')
|
164 |
+
|
165 |
for pred in predictions:
|
166 |
box = pred['box']
|
167 |
+
score = pred['score']
|
168 |
+
label = f"{translate_label(pred['label'])} ({score:.2%})"
|
169 |
|
170 |
+
# Create and combine heatmap overlay
|
171 |
+
heatmap = create_heatmap_overlay(image, box, score)
|
172 |
+
result_image = Image.alpha_composite(result_image, heatmap)
|
173 |
+
|
174 |
+
# Draw border and label
|
175 |
+
draw = ImageDraw.Draw(result_image)
|
176 |
draw.rectangle(
|
177 |
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
178 |
+
outline="#FFFFFF",
|
179 |
width=2
|
180 |
)
|
181 |
|
182 |
+
# Add label with background
|
183 |
+
text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
|
184 |
+
draw.rectangle(text_bbox, fill="#000000AA")
|
185 |
+
draw.text((box['xmin'], box['ymin']-20), label, fill="white")
|
186 |
+
|
187 |
+
return result_image
|
188 |
|
189 |
def main():
|
190 |
models = load_models()
|
191 |
|
192 |
+
# Initialize session state
|
193 |
+
if 'analyzed' not in st.session_state:
|
194 |
+
st.session_state.analyzed = False
|
195 |
+
|
196 |
+
# Main container
|
197 |
+
st.markdown('<div class="main-container">', unsafe_allow_html=True)
|
198 |
+
|
199 |
+
# Upload section
|
200 |
+
st.markdown('<div class="upload-section">', unsafe_allow_html=True)
|
201 |
st.markdown("### 📤 Röntgenbild Upload")
|
202 |
+
uploaded_file = st.file_uploader("", type=['png', 'jpg', 'jpeg'])
|
203 |
|
204 |
conf_threshold = st.slider(
|
205 |
"Konfidenzschwelle",
|
206 |
min_value=0.0, max_value=1.0,
|
207 |
+
value=0.60, step=0.05
|
|
|
208 |
)
|
209 |
|
210 |
+
analyze_button = st.button("Analysieren")
|
211 |
st.markdown('</div>', unsafe_allow_html=True)
|
212 |
+
|
213 |
+
# Results section
|
214 |
+
st.markdown('<div class="result-section">', unsafe_allow_html=True)
|
215 |
+
|
216 |
+
if uploaded_file and analyze_button:
|
217 |
+
st.session_state.analyzed = True
|
218 |
+
|
219 |
+
with st.spinner("Analysiere Bild..."):
|
220 |
+
image = Image.open(uploaded_file)
|
221 |
|
222 |
+
col1, col2 = st.columns(2)
|
223 |
+
|
224 |
+
with col1:
|
225 |
+
st.markdown("### 🎯 KI-Analyse")
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
+
# KnochenWächter results
|
228 |
+
st.markdown("#### 🛡️ KnochenWächter")
|
229 |
+
predictions = models["KnochenWächter"](image)
|
230 |
+
for pred in predictions:
|
231 |
+
if pred['score'] >= conf_threshold:
|
232 |
+
st.markdown(f"""
|
233 |
+
<div class="result-box">
|
234 |
+
<span style="color: {'#0066cc' if pred['score'] > 0.7 else '#ffa500'}; font-weight: 500;">
|
235 |
+
{pred['score']:.1%}
|
236 |
+
</span> - {translate_label(pred['label'])}
|
237 |
+
</div>
|
238 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
+
# RöntgenMeister results
|
241 |
+
st.markdown("#### 🎓 RöntgenMeister")
|
242 |
+
predictions = models["RöntgenMeister"](image)
|
243 |
+
for pred in predictions:
|
244 |
+
if pred['score'] >= conf_threshold:
|
245 |
+
st.markdown(f"""
|
246 |
+
<div class="result-box">
|
247 |
+
<span style="color: {'#0066cc' if pred['score'] > 0.7 else '#ffa500'}; font-weight: 500;">
|
248 |
+
{pred['score']:.1%}
|
249 |
+
</span> - {translate_label(pred['label'])}
|
250 |
+
</div>
|
251 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
252 |
|
253 |
+
with col2:
|
254 |
+
st.markdown("### 🔍 Visualisierung")
|
255 |
+
predictions = models["KnochenAuge"](image)
|
256 |
+
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
|
257 |
+
|
258 |
+
if filtered_preds:
|
259 |
+
result_image = draw_boxes(image, filtered_preds)
|
260 |
+
st.image(result_image, use_container_width=True)
|
261 |
+
else:
|
262 |
+
st.image(image, use_container_width=True)
|
263 |
+
|
264 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
265 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
266 |
|
267 |
if __name__ == "__main__":
|
268 |
main()
|