Yaswanth sai commited on
Commit
d0e8138
·
1 Parent(s): f9ab4db
Files changed (1) hide show
  1. app.py +0 -118
app.py DELETED
@@ -1,118 +0,0 @@
1
- import gradio as gr
2
- from transformers import AutoTokenizer, AutoModelForCausalLM
3
- from peft import PeftModel
4
- import torch
5
- import os
6
-
7
- # Constants
8
- MODEL_NAME = "Salesforce/codegen-350M-mono"
9
- LORA_PATH = "fine-tuned-model"
10
-
11
- # Initialize tokenizer and model
12
- print("Loading tokenizer...")
13
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
14
-
15
- print("Loading base model...")
16
- base_model = AutoModelForCausalLM.from_pretrained(
17
- MODEL_NAME,
18
- trust_remote_code=True,
19
- device_map="auto",
20
- torch_dtype=torch.float16
21
- )
22
-
23
- print("Loading fine-tuned model...")
24
- model = PeftModel.from_pretrained(
25
- base_model,
26
- LORA_PATH,
27
- device_map="auto",
28
- torch_dtype=torch.float16
29
- )
30
-
31
- def generate_response(task_description, code_snippet, request_type, mode="concise"):
32
- try:
33
- # Format the prompt based on request type
34
- if request_type == "hint":
35
- prompt = f"Task: {task_description}\nCode:\n{code_snippet}\nHINT:"
36
- elif request_type == "feedback":
37
- prompt = f"Task: {task_description}\nCode:\n{code_snippet}\nFEEDBACK:"
38
- else: # follow-up
39
- prompt = f"Task: {task_description}\nCode:\n{code_snippet}\nFOLLOW-UP:"
40
-
41
- # Encode and generate
42
- inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
43
-
44
- outputs = model.generate(
45
- **inputs,
46
- max_new_tokens=256 if mode == "detailed" else 128,
47
- do_sample=True,
48
- temperature=0.7,
49
- top_p=0.95,
50
- )
51
-
52
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
53
-
54
- # Extract the relevant part of the response
55
- if request_type == "hint" and "HINT:" in response:
56
- response = response.split("HINT:", 1)[1].strip()
57
- elif request_type == "feedback" and "FEEDBACK:" in response:
58
- response = response.split("FEEDBACK:", 1)[1].strip()
59
- elif request_type == "follow-up" and "FOLLOW-UP:" in response:
60
- response = response.split("FOLLOW-UP:", 1)[1].strip()
61
-
62
- return response
63
- except Exception as e:
64
- return f"An error occurred: {str(e)}"
65
-
66
- # Create Gradio interface
67
- with gr.Blocks(title="Live Coding HR Assistant") as demo:
68
- gr.Markdown("# 💻 Live Coding HR Assistant")
69
- gr.Markdown("Get hints, feedback, and follow-up questions for your coding tasks!")
70
-
71
- with gr.Row():
72
- with gr.Column():
73
- task_description = gr.Textbox(
74
- label="Task Description",
75
- value="",
76
- lines=5
77
- )
78
- code_snippet = gr.Code(
79
- label="Code Snippet",
80
- language="python",
81
- value=""
82
- )
83
- request_type = gr.Radio(
84
- choices=["hint", "feedback", "follow-up"],
85
- label="What would you like?",
86
- value="hint"
87
- )
88
- mode = gr.Radio(
89
- choices=["concise", "detailed"],
90
- label="Response Style",
91
- value="concise"
92
- )
93
- submit_btn = gr.Button("Get Response", variant="primary")
94
-
95
- with gr.Column():
96
- output = gr.Textbox(
97
- label="AI Response",
98
- lines=8,
99
- value=""
100
- )
101
-
102
- submit_btn.click(
103
- fn=generate_response,
104
- inputs=[task_description, code_snippet, request_type, mode],
105
- outputs=output,
106
- api_name="predict",
107
- concurrency_limit=1 # Set concurrency limit here
108
- )
109
-
110
- # Configure queue and launch
111
- demo.queue(
112
- max_size=10 # Removed concurrency_count
113
- ).launch(
114
- server_name="0.0.0.0",
115
- server_port=7860,
116
- share=True
117
- # You can optionally add max_threads here if needed, e.g., max_threads=10
118
- )