Spaces:
Runtime error
Runtime error
Commit
·
8c25af7
1
Parent(s):
108e46c
added Turkish Automatic Speech Recognition demo
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
from utils import SpeechRecognition
|
4 |
+
|
5 |
+
sp = SpeechRecognition()
|
6 |
+
|
7 |
+
sp.load_model()
|
8 |
+
|
9 |
+
#sample_file = "assets/samples/sample1378.flac"
|
10 |
+
|
11 |
+
def recognition(audio_file):
|
12 |
+
print("audio_file", audio_file.name)
|
13 |
+
speech, rate = sp.load_speech_with_file(audio_file.name)
|
14 |
+
|
15 |
+
result = sp.predict_audio_file(speech)
|
16 |
+
print(result)
|
17 |
+
|
18 |
+
return result
|
19 |
+
|
20 |
+
inputs = gr.inputs.Audio(label="Input Audio", type="file")
|
21 |
+
|
22 |
+
outputs = "text"
|
23 |
+
title = "Turkish Automatic Speech Recognition"
|
24 |
+
description = "Demo for Turkish Automatic Speech Recognition with Huggingface wav2vec Turkish Model. To use it, simply upload your audio, or click one of the examples to load them."
|
25 |
+
article = "<p style='text-align: center'>This is the model for <a href='https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-turkish' target='_blank'>m3hrdadfi/wav2vec2-large-xlsr-turkish</a>, a fine-tuned <a href='https://huggingface.co/facebook/wav2vec2-large-xlsr-53' target='_blank'>facebook/wav2vec2-large-xlsr-53</a> model on the <a href='https://commonvoice.mozilla.org/en/datasets' target='_blank'>Turkish Common Voice dataset</a>.<br/>When using this model, make sure that your speech input is sampled at 16kHz.</a></p>"
|
26 |
+
examples = [
|
27 |
+
['assets/samples/common_voice_sample_1378.flac'],
|
28 |
+
['assets/samples/common_voice_sample_1589.flac'],
|
29 |
+
['assets/samples/baris_ozcan_sample_1.m4a'],
|
30 |
+
['assets/samples/baris_ozcan_sample_2.wav'],
|
31 |
+
['assets/samples/baris_ozcan_sample_3.m4a']
|
32 |
+
]
|
33 |
+
|
34 |
+
gr.Interface(recognition, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()
|
assets/samples/baris_ozcan_sample_1.m4a
ADDED
Binary file (83.4 kB). View file
|
|
assets/samples/baris_ozcan_sample_2.wav
ADDED
Binary file (812 kB). View file
|
|
assets/samples/baris_ozcan_sample_3.m4a
ADDED
Binary file (67.2 kB). View file
|
|
assets/samples/common_voice_sample_1378.flac
ADDED
Binary file (70 kB). View file
|
|
assets/samples/common_voice_sample_1589.flac
ADDED
Binary file (57.3 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==2.2.6
|
2 |
+
transformers
|
3 |
+
datasets
|
4 |
+
torchaudio
|
5 |
+
librosa
|
6 |
+
jiwer
|
7 |
+
numpy ==1.20
|
utils.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import librosa
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
6 |
+
from datasets import load_dataset
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import re
|
10 |
+
|
11 |
+
chars_to_ignore = [
|
12 |
+
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
|
13 |
+
"#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"',
|
14 |
+
"“", "%", "‘", "�", "–", "…", "_", "”", '“', '„'
|
15 |
+
]
|
16 |
+
|
17 |
+
chars_to_mapping = {
|
18 |
+
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
class SpeechRecognition:
|
24 |
+
def __init__(self):
|
25 |
+
print("init SpeechRecognition")
|
26 |
+
|
27 |
+
def load_model(self):
|
28 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
+
self.processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish")
|
30 |
+
self.model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish").to(self.device)
|
31 |
+
|
32 |
+
return self
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
def multiple_replace(self, text, chars_to_mapping):
|
37 |
+
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
|
38 |
+
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
|
39 |
+
|
40 |
+
def remove_special_characters(self, text, chars_to_ignore_regex):
|
41 |
+
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
|
42 |
+
return text
|
43 |
+
|
44 |
+
def normalizer(self, batch, chars_to_ignore, chars_to_mapping):
|
45 |
+
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
|
46 |
+
text = batch["sentence"].lower().strip()
|
47 |
+
|
48 |
+
text = text.replace("\u0307", " ").strip()
|
49 |
+
text = self.multiple_replace(text, chars_to_mapping)
|
50 |
+
text = self.remove_special_characters(text, chars_to_ignore_regex)
|
51 |
+
|
52 |
+
batch["sentence"] = text
|
53 |
+
return batch
|
54 |
+
|
55 |
+
|
56 |
+
def speech_file_to_array_fn(self, batch):
|
57 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
58 |
+
speech_array = speech_array.squeeze().numpy()
|
59 |
+
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
|
60 |
+
|
61 |
+
batch["speech"] = speech_array
|
62 |
+
return batch
|
63 |
+
|
64 |
+
|
65 |
+
def predict(self, batch):
|
66 |
+
features = self.processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
67 |
+
|
68 |
+
input_values = features.input_values.to(self.device)
|
69 |
+
attention_mask = features.attention_mask.to(self.device)
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
logits = self.model(input_values, attention_mask=attention_mask).logits
|
73 |
+
|
74 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
75 |
+
|
76 |
+
batch["predicted"] = self.processor.batch_decode(pred_ids)[0]
|
77 |
+
return batch
|
78 |
+
|
79 |
+
def predict_audio_file(self, speech):
|
80 |
+
features = self.processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True)
|
81 |
+
|
82 |
+
input_values = features.input_values.to(self.device)
|
83 |
+
attention_mask = features.attention_mask.to(self.device)
|
84 |
+
|
85 |
+
with torch.no_grad():
|
86 |
+
logits = self.model(input_values, attention_mask=attention_mask).logits
|
87 |
+
|
88 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
89 |
+
|
90 |
+
transcriptions = self.processor.decode(pred_ids[0])
|
91 |
+
return transcriptions
|
92 |
+
|
93 |
+
|
94 |
+
def load_speech_with_file(self, audio_file):
|
95 |
+
speech, rate = librosa.load(audio_file,sr=16000)
|
96 |
+
|
97 |
+
return speech, rate
|