Spaces:
Sleeping
feat(data-processing): implement data processing pipeline with embeddings
Browse filesBREAKING CHANGE: Add data processing implementation with robust path handling
Key Changes:
1. Create DataProcessor class for medical data processing:
- Handle paths with spaces and special characters
- Support dataset/dataset directory structure
- Add detailed logging for debugging
2. Implement core functionalities:
- Load filtered emergency and treatment data
- Create intelligent chunks based on matched keywords
- Generate embeddings using NeuML/pubmedbert-base-embeddings
- Build ANNOY indices for vector search
- Save embeddings and metadata separately
3. Add test coverage:
- Basic data loading tests
- Chunking functionality tests
- Model loading tests
Technical Details:
- Use pathlib.Path.resolve() for robust path handling
- Separate storage for embeddings and indices:
* /models/embeddings/ for vector representations
* /models/indices/annoy/ for search indices
- Keep keywords as metadata without embedding
Testing:
✅ Data loading: 11,914 emergency + 11,023 treatment records
✅ Chunking: Successful with keyword-centered approach
✅ Model loading: NeuML/pubmedbert-base-embeddings (768 dims)
Next Steps:
- Integrate with Meditron for enhanced processing
- Implement prompt engineering
- Add hybrid search functionality
- requirements.txt +1 -0
- src/commit_message_20250726_data_processing.txt +38 -0
- src/data_processing.py +531 -0
- tests/test_data_processing.py +195 -0
@@ -64,6 +64,7 @@ safehttpx==0.1.6
|
|
64 |
safetensors==0.5.3
|
65 |
seaborn==0.13.2
|
66 |
semantic-version==2.10.0
|
|
|
67 |
shellingham==1.5.4
|
68 |
six==1.17.0
|
69 |
sniffio==1.3.1
|
|
|
64 |
safetensors==0.5.3
|
65 |
seaborn==0.13.2
|
66 |
semantic-version==2.10.0
|
67 |
+
sentence-transformers==3.0.1
|
68 |
shellingham==1.5.4
|
69 |
six==1.17.0
|
70 |
sniffio==1.3.1
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
feat(data-processing): implement data processing pipeline with embeddings
|
2 |
+
|
3 |
+
BREAKING CHANGE: Add data processing implementation with robust path handling
|
4 |
+
|
5 |
+
Key Changes:
|
6 |
+
1. Create DataProcessor class for medical data processing:
|
7 |
+
- Handle paths with spaces and special characters
|
8 |
+
- Support dataset/dataset directory structure
|
9 |
+
- Add detailed logging for debugging
|
10 |
+
|
11 |
+
2. Implement core functionalities:
|
12 |
+
- Load filtered emergency and treatment data
|
13 |
+
- Create intelligent chunks based on matched keywords
|
14 |
+
- Generate embeddings using NeuML/pubmedbert-base-embeddings
|
15 |
+
- Build ANNOY indices for vector search
|
16 |
+
- Save embeddings and metadata separately
|
17 |
+
|
18 |
+
3. Add test coverage:
|
19 |
+
- Basic data loading tests
|
20 |
+
- Chunking functionality tests
|
21 |
+
- Model loading tests
|
22 |
+
|
23 |
+
Technical Details:
|
24 |
+
- Use pathlib.Path.resolve() for robust path handling
|
25 |
+
- Separate storage for embeddings and indices:
|
26 |
+
* /models/embeddings/ for vector representations
|
27 |
+
* /models/indices/annoy/ for search indices
|
28 |
+
- Keep keywords as metadata without embedding
|
29 |
+
|
30 |
+
Testing:
|
31 |
+
✅ Data loading: 11,914 emergency + 11,023 treatment records
|
32 |
+
✅ Chunking: Successful with keyword-centered approach
|
33 |
+
✅ Model loading: NeuML/pubmedbert-base-embeddings (768 dims)
|
34 |
+
|
35 |
+
Next Steps:
|
36 |
+
- Integrate with Meditron for enhanced processing
|
37 |
+
- Implement prompt engineering
|
38 |
+
- Add hybrid search functionality
|
@@ -0,0 +1,531 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
OnCall.ai Data Processing Module
|
3 |
+
|
4 |
+
This module handles:
|
5 |
+
1. Loading filtered medical guideline data
|
6 |
+
2. Creating intelligent chunks based on matched keywords
|
7 |
+
3. Generating embeddings using NeuML/pubmedbert-base-embeddings
|
8 |
+
4. Building ANNOY indices for vector search
|
9 |
+
5. Data quality validation
|
10 |
+
|
11 |
+
Author: OnCall.ai Team
|
12 |
+
Date: 2025-07-26
|
13 |
+
"""
|
14 |
+
|
15 |
+
import os
|
16 |
+
import json
|
17 |
+
import pandas as pd
|
18 |
+
import numpy as np
|
19 |
+
from pathlib import Path
|
20 |
+
from typing import List, Dict, Tuple, Any
|
21 |
+
from sentence_transformers import SentenceTransformer
|
22 |
+
from annoy import AnnoyIndex
|
23 |
+
import logging
|
24 |
+
|
25 |
+
# Setup logging
|
26 |
+
logging.basicConfig(level=logging.INFO)
|
27 |
+
logger = logging.getLogger(__name__)
|
28 |
+
|
29 |
+
class DataProcessor:
|
30 |
+
"""Main data processing class for OnCall.ai RAG system"""
|
31 |
+
|
32 |
+
def __init__(self, base_dir: str = None):
|
33 |
+
"""
|
34 |
+
Initialize DataProcessor
|
35 |
+
|
36 |
+
Args:
|
37 |
+
base_dir: Base directory path for the project
|
38 |
+
"""
|
39 |
+
self.base_dir = Path(base_dir).resolve() if base_dir else Path(__file__).parent.parent.resolve()
|
40 |
+
self.dataset_dir = (self.base_dir / "dataset" / "dataset").resolve() # 修正为实际的数据目录
|
41 |
+
self.models_dir = (self.base_dir / "models").resolve()
|
42 |
+
|
43 |
+
# Model configuration
|
44 |
+
self.embedding_model_name = "NeuML/pubmedbert-base-embeddings"
|
45 |
+
self.embedding_dim = 768 # PubMedBERT dimension
|
46 |
+
self.chunk_size = 512
|
47 |
+
|
48 |
+
# Initialize model (will be loaded when needed)
|
49 |
+
self.embedding_model = None
|
50 |
+
|
51 |
+
# Data containers
|
52 |
+
self.emergency_data = None
|
53 |
+
self.treatment_data = None
|
54 |
+
self.emergency_chunks = []
|
55 |
+
self.treatment_chunks = []
|
56 |
+
|
57 |
+
logger.info(f"Initialized DataProcessor with:")
|
58 |
+
logger.info(f" Base directory: {self.base_dir}")
|
59 |
+
logger.info(f" Dataset directory: {self.dataset_dir}")
|
60 |
+
logger.info(f" Models directory: {self.models_dir}")
|
61 |
+
|
62 |
+
def load_embedding_model(self):
|
63 |
+
"""Load the embedding model"""
|
64 |
+
if self.embedding_model is None:
|
65 |
+
logger.info(f"Loading embedding model: {self.embedding_model_name}")
|
66 |
+
self.embedding_model = SentenceTransformer(self.embedding_model_name)
|
67 |
+
logger.info("Embedding model loaded successfully")
|
68 |
+
return self.embedding_model
|
69 |
+
|
70 |
+
def load_filtered_data(self) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
71 |
+
"""
|
72 |
+
Load pre-filtered emergency and treatment data
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
Tuple of (emergency_data, treatment_data) DataFrames
|
76 |
+
"""
|
77 |
+
logger.info("Loading filtered medical data...")
|
78 |
+
|
79 |
+
# File paths
|
80 |
+
emergency_path = (self.dataset_dir / "emergency" / "emergency_subset_opt.jsonl").resolve()
|
81 |
+
treatment_path = (self.dataset_dir / "emergency_treatment" / "emergency_treatment_subset_opt.jsonl").resolve()
|
82 |
+
|
83 |
+
logger.info(f"Looking for emergency data at: {emergency_path}")
|
84 |
+
logger.info(f"Looking for treatment data at: {treatment_path}")
|
85 |
+
|
86 |
+
# Validate file existence
|
87 |
+
if not emergency_path.exists():
|
88 |
+
raise FileNotFoundError(f"Emergency data not found: {emergency_path}")
|
89 |
+
if not treatment_path.exists():
|
90 |
+
raise FileNotFoundError(f"Treatment data not found: {treatment_path}")
|
91 |
+
|
92 |
+
# Load data
|
93 |
+
self.emergency_data = pd.read_json(str(emergency_path), lines=True) # 使用 str() 确保路径正确处理
|
94 |
+
self.treatment_data = pd.read_json(str(treatment_path), lines=True)
|
95 |
+
|
96 |
+
logger.info(f"Loaded {len(self.emergency_data)} emergency records")
|
97 |
+
logger.info(f"Loaded {len(self.treatment_data)} treatment records")
|
98 |
+
|
99 |
+
return self.emergency_data, self.treatment_data
|
100 |
+
|
101 |
+
def create_keyword_centered_chunks(self, text: str, matched_keywords: str,
|
102 |
+
chunk_size: int = 512, doc_id: str = None) -> List[Dict[str, Any]]:
|
103 |
+
"""
|
104 |
+
Create chunks centered around matched keywords
|
105 |
+
|
106 |
+
Args:
|
107 |
+
text: Input text
|
108 |
+
matched_keywords: Pipe-separated keywords (e.g., "MI|chest pain|fever")
|
109 |
+
chunk_size: Size of each chunk
|
110 |
+
doc_id: Document ID for tracking
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
List of chunk dictionaries
|
114 |
+
"""
|
115 |
+
if not matched_keywords or pd.isna(matched_keywords):
|
116 |
+
return []
|
117 |
+
|
118 |
+
chunks = []
|
119 |
+
keywords = matched_keywords.split("|") if matched_keywords else []
|
120 |
+
|
121 |
+
for i, keyword in enumerate(keywords):
|
122 |
+
# Find keyword position in text (case insensitive)
|
123 |
+
keyword_pos = text.lower().find(keyword.lower())
|
124 |
+
|
125 |
+
if keyword_pos != -1:
|
126 |
+
# Calculate chunk boundaries centered on keyword
|
127 |
+
start = max(0, keyword_pos - chunk_size // 2)
|
128 |
+
end = min(len(text), keyword_pos + chunk_size // 2)
|
129 |
+
|
130 |
+
# Extract chunk text
|
131 |
+
chunk_text = text[start:end].strip()
|
132 |
+
|
133 |
+
if chunk_text: # Only add non-empty chunks
|
134 |
+
chunk_info = {
|
135 |
+
"text": chunk_text,
|
136 |
+
"primary_keyword": keyword,
|
137 |
+
"all_matched_keywords": matched_keywords,
|
138 |
+
"keyword_position": keyword_pos,
|
139 |
+
"chunk_start": start,
|
140 |
+
"chunk_end": end,
|
141 |
+
"chunk_id": f"{doc_id}_chunk_{i}" if doc_id else f"chunk_{i}",
|
142 |
+
"source_doc_id": doc_id
|
143 |
+
}
|
144 |
+
chunks.append(chunk_info)
|
145 |
+
|
146 |
+
return chunks
|
147 |
+
|
148 |
+
def create_dual_keyword_chunks(self, text: str, emergency_keywords: str,
|
149 |
+
treatment_keywords: str, chunk_size: int = 512,
|
150 |
+
doc_id: str = None) -> List[Dict[str, Any]]:
|
151 |
+
"""
|
152 |
+
Create chunks for treatment data with both emergency and treatment keywords
|
153 |
+
|
154 |
+
Args:
|
155 |
+
text: Input text
|
156 |
+
emergency_keywords: Emergency keywords
|
157 |
+
treatment_keywords: Treatment keywords
|
158 |
+
chunk_size: Size of each chunk
|
159 |
+
doc_id: Document ID for tracking
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
List of chunk dictionaries
|
163 |
+
"""
|
164 |
+
if not treatment_keywords or pd.isna(treatment_keywords):
|
165 |
+
return []
|
166 |
+
|
167 |
+
chunks = []
|
168 |
+
em_keywords = emergency_keywords.split("|") if emergency_keywords else []
|
169 |
+
tr_keywords = treatment_keywords.split("|") if treatment_keywords else []
|
170 |
+
|
171 |
+
# Process treatment keywords as primary (since this is treatment-focused data)
|
172 |
+
for i, tr_keyword in enumerate(tr_keywords):
|
173 |
+
tr_pos = text.lower().find(tr_keyword.lower())
|
174 |
+
|
175 |
+
if tr_pos != -1:
|
176 |
+
# Find closest emergency keyword for context
|
177 |
+
closest_em_keyword = None
|
178 |
+
closest_distance = float('inf')
|
179 |
+
|
180 |
+
for em_keyword in em_keywords:
|
181 |
+
em_pos = text.lower().find(em_keyword.lower())
|
182 |
+
if em_pos != -1:
|
183 |
+
distance = abs(tr_pos - em_pos)
|
184 |
+
if distance < closest_distance and distance < chunk_size:
|
185 |
+
closest_distance = distance
|
186 |
+
closest_em_keyword = em_keyword
|
187 |
+
|
188 |
+
# Calculate chunk boundaries
|
189 |
+
if closest_em_keyword:
|
190 |
+
# Center between both keywords
|
191 |
+
em_pos = text.lower().find(closest_em_keyword.lower())
|
192 |
+
center = (tr_pos + em_pos) // 2
|
193 |
+
else:
|
194 |
+
# Center on treatment keyword
|
195 |
+
center = tr_pos
|
196 |
+
|
197 |
+
start = max(0, center - chunk_size // 2)
|
198 |
+
end = min(len(text), center + chunk_size // 2)
|
199 |
+
|
200 |
+
chunk_text = text[start:end].strip()
|
201 |
+
|
202 |
+
if chunk_text:
|
203 |
+
chunk_info = {
|
204 |
+
"text": chunk_text,
|
205 |
+
"primary_keyword": tr_keyword,
|
206 |
+
"emergency_keywords": emergency_keywords,
|
207 |
+
"treatment_keywords": treatment_keywords,
|
208 |
+
"closest_emergency_keyword": closest_em_keyword,
|
209 |
+
"keyword_distance": closest_distance if closest_em_keyword else None,
|
210 |
+
"chunk_start": start,
|
211 |
+
"chunk_end": end,
|
212 |
+
"chunk_id": f"{doc_id}_treatment_chunk_{i}" if doc_id else f"treatment_chunk_{i}",
|
213 |
+
"source_doc_id": doc_id
|
214 |
+
}
|
215 |
+
chunks.append(chunk_info)
|
216 |
+
|
217 |
+
return chunks
|
218 |
+
|
219 |
+
def process_emergency_chunks(self) -> List[Dict[str, Any]]:
|
220 |
+
"""Process emergency data into chunks"""
|
221 |
+
logger.info("Processing emergency data into chunks...")
|
222 |
+
|
223 |
+
if self.emergency_data is None:
|
224 |
+
raise ValueError("Emergency data not loaded. Call load_filtered_data() first.")
|
225 |
+
|
226 |
+
all_chunks = []
|
227 |
+
|
228 |
+
for idx, row in self.emergency_data.iterrows():
|
229 |
+
if pd.notna(row.get('clean_text')) and pd.notna(row.get('matched')):
|
230 |
+
chunks = self.create_keyword_centered_chunks(
|
231 |
+
text=row['clean_text'],
|
232 |
+
matched_keywords=row['matched'],
|
233 |
+
chunk_size=self.chunk_size,
|
234 |
+
doc_id=str(row.get('id', idx))
|
235 |
+
)
|
236 |
+
|
237 |
+
# Add metadata to each chunk
|
238 |
+
for chunk in chunks:
|
239 |
+
chunk.update({
|
240 |
+
'source_type': 'emergency',
|
241 |
+
'source_title': row.get('title', ''),
|
242 |
+
'source_url': row.get('url', ''),
|
243 |
+
'has_emergency': row.get('has_emergency', True),
|
244 |
+
'doc_type': row.get('type', 'emergency')
|
245 |
+
})
|
246 |
+
|
247 |
+
all_chunks.extend(chunks)
|
248 |
+
|
249 |
+
self.emergency_chunks = all_chunks
|
250 |
+
logger.info(f"Generated {len(all_chunks)} emergency chunks")
|
251 |
+
return all_chunks
|
252 |
+
|
253 |
+
def process_treatment_chunks(self) -> List[Dict[str, Any]]:
|
254 |
+
"""Process treatment data into chunks"""
|
255 |
+
logger.info("Processing treatment data into chunks...")
|
256 |
+
|
257 |
+
if self.treatment_data is None:
|
258 |
+
raise ValueError("Treatment data not loaded. Call load_filtered_data() first.")
|
259 |
+
|
260 |
+
all_chunks = []
|
261 |
+
|
262 |
+
for idx, row in self.treatment_data.iterrows():
|
263 |
+
if (pd.notna(row.get('clean_text')) and
|
264 |
+
pd.notna(row.get('treatment_matched'))):
|
265 |
+
|
266 |
+
chunks = self.create_dual_keyword_chunks(
|
267 |
+
text=row['clean_text'],
|
268 |
+
emergency_keywords=row.get('matched', ''),
|
269 |
+
treatment_keywords=row['treatment_matched'],
|
270 |
+
chunk_size=self.chunk_size,
|
271 |
+
doc_id=str(row.get('id', idx))
|
272 |
+
)
|
273 |
+
|
274 |
+
# Add metadata to each chunk
|
275 |
+
for chunk in chunks:
|
276 |
+
chunk.update({
|
277 |
+
'source_type': 'treatment',
|
278 |
+
'source_title': row.get('title', ''),
|
279 |
+
'source_url': row.get('url', ''),
|
280 |
+
'has_emergency': row.get('has_emergency', True),
|
281 |
+
'has_treatment': row.get('has_treatment', True),
|
282 |
+
'doc_type': row.get('type', 'treatment')
|
283 |
+
})
|
284 |
+
|
285 |
+
all_chunks.extend(chunks)
|
286 |
+
|
287 |
+
self.treatment_chunks = all_chunks
|
288 |
+
logger.info(f"Generated {len(all_chunks)} treatment chunks")
|
289 |
+
return all_chunks
|
290 |
+
|
291 |
+
def generate_embeddings(self, chunks: List[Dict[str, Any]],
|
292 |
+
chunk_type: str = "emergency") -> np.ndarray:
|
293 |
+
"""
|
294 |
+
Generate embeddings for chunks
|
295 |
+
|
296 |
+
Args:
|
297 |
+
chunks: List of chunk dictionaries
|
298 |
+
chunk_type: Type of chunks ("emergency" or "treatment")
|
299 |
+
|
300 |
+
Returns:
|
301 |
+
numpy array of embeddings
|
302 |
+
"""
|
303 |
+
logger.info(f"Generating embeddings for {len(chunks)} {chunk_type} chunks...")
|
304 |
+
|
305 |
+
# Load model if not already loaded
|
306 |
+
model = self.load_embedding_model()
|
307 |
+
|
308 |
+
# Extract text from chunks
|
309 |
+
texts = [chunk['text'] for chunk in chunks]
|
310 |
+
|
311 |
+
# Generate embeddings in batches
|
312 |
+
batch_size = 32
|
313 |
+
embeddings = []
|
314 |
+
|
315 |
+
for i in range(0, len(texts), batch_size):
|
316 |
+
batch_texts = texts[i:i+batch_size]
|
317 |
+
batch_embeddings = model.encode(batch_texts, show_progress_bar=True)
|
318 |
+
embeddings.append(batch_embeddings)
|
319 |
+
|
320 |
+
# Concatenate all embeddings
|
321 |
+
all_embeddings = np.vstack(embeddings)
|
322 |
+
|
323 |
+
logger.info(f"Generated embeddings shape: {all_embeddings.shape}")
|
324 |
+
return all_embeddings
|
325 |
+
|
326 |
+
def build_annoy_index(self, embeddings: np.ndarray,
|
327 |
+
index_name: str, n_trees: int = 10) -> AnnoyIndex:
|
328 |
+
"""
|
329 |
+
Build ANNOY index from embeddings
|
330 |
+
|
331 |
+
Args:
|
332 |
+
embeddings: Numpy array of embeddings
|
333 |
+
index_name: Name for the index file
|
334 |
+
n_trees: Number of trees for ANNOY index
|
335 |
+
|
336 |
+
Returns:
|
337 |
+
Built ANNOY index
|
338 |
+
"""
|
339 |
+
logger.info(f"Building ANNOY index: {index_name}")
|
340 |
+
|
341 |
+
# Create ANNOY index
|
342 |
+
index = AnnoyIndex(self.embedding_dim, 'angular') # angular = cosine similarity
|
343 |
+
|
344 |
+
# Add vectors to index
|
345 |
+
for i, embedding in enumerate(embeddings):
|
346 |
+
index.add_item(i, embedding)
|
347 |
+
|
348 |
+
# Build index
|
349 |
+
index.build(n_trees)
|
350 |
+
|
351 |
+
# Save index
|
352 |
+
index_path = self.models_dir / "indices" / "annoy" / f"{index_name}.ann"
|
353 |
+
index_path.parent.mkdir(parents=True, exist_ok=True)
|
354 |
+
index.save(str(index_path))
|
355 |
+
|
356 |
+
logger.info(f"ANNOY index saved to: {index_path}")
|
357 |
+
return index
|
358 |
+
|
359 |
+
def save_chunks_and_embeddings(self, chunks: List[Dict[str, Any]],
|
360 |
+
embeddings: np.ndarray, chunk_type: str):
|
361 |
+
"""
|
362 |
+
Save chunks metadata and embeddings
|
363 |
+
|
364 |
+
Args:
|
365 |
+
chunks: List of chunk dictionaries
|
366 |
+
embeddings: Numpy array of embeddings
|
367 |
+
chunk_type: Type of chunks ("emergency" or "treatment")
|
368 |
+
"""
|
369 |
+
logger.info(f"Saving {chunk_type} chunks and embeddings...")
|
370 |
+
|
371 |
+
# Create output directories
|
372 |
+
embeddings_dir = self.models_dir / "embeddings"
|
373 |
+
embeddings_dir.mkdir(parents=True, exist_ok=True)
|
374 |
+
|
375 |
+
# Save chunks metadata
|
376 |
+
chunks_file = embeddings_dir / f"{chunk_type}_chunks.json"
|
377 |
+
with open(chunks_file, 'w', encoding='utf-8') as f:
|
378 |
+
json.dump(chunks, f, ensure_ascii=False, indent=2)
|
379 |
+
|
380 |
+
# Save embeddings
|
381 |
+
embeddings_file = embeddings_dir / f"{chunk_type}_embeddings.npy"
|
382 |
+
np.save(embeddings_file, embeddings)
|
383 |
+
|
384 |
+
logger.info(f"Saved {chunk_type} data:")
|
385 |
+
logger.info(f" - Chunks: {chunks_file}")
|
386 |
+
logger.info(f" - Embeddings: {embeddings_file}")
|
387 |
+
|
388 |
+
def validate_data_quality(self) -> Dict[str, Any]:
|
389 |
+
"""
|
390 |
+
Validate data quality and return statistics
|
391 |
+
|
392 |
+
Returns:
|
393 |
+
Dictionary with validation statistics
|
394 |
+
"""
|
395 |
+
logger.info("Validating data quality...")
|
396 |
+
|
397 |
+
validation_report = {
|
398 |
+
"emergency_data": {},
|
399 |
+
"treatment_data": {},
|
400 |
+
"chunks": {},
|
401 |
+
"embeddings": {}
|
402 |
+
}
|
403 |
+
|
404 |
+
# Emergency data validation
|
405 |
+
if self.emergency_data is not None:
|
406 |
+
validation_report["emergency_data"] = {
|
407 |
+
"total_records": len(self.emergency_data),
|
408 |
+
"records_with_text": self.emergency_data['clean_text'].notna().sum(),
|
409 |
+
"records_with_keywords": self.emergency_data['matched'].notna().sum(),
|
410 |
+
"avg_text_length": self.emergency_data['clean_text'].str.len().mean()
|
411 |
+
}
|
412 |
+
|
413 |
+
# Treatment data validation
|
414 |
+
if self.treatment_data is not None:
|
415 |
+
validation_report["treatment_data"] = {
|
416 |
+
"total_records": len(self.treatment_data),
|
417 |
+
"records_with_text": self.treatment_data['clean_text'].notna().sum(),
|
418 |
+
"records_with_emergency_keywords": self.treatment_data['matched'].notna().sum(),
|
419 |
+
"records_with_treatment_keywords": self.treatment_data['treatment_matched'].notna().sum(),
|
420 |
+
"avg_text_length": self.treatment_data['clean_text'].str.len().mean()
|
421 |
+
}
|
422 |
+
|
423 |
+
# Chunks validation
|
424 |
+
validation_report["chunks"] = {
|
425 |
+
"emergency_chunks": len(self.emergency_chunks),
|
426 |
+
"treatment_chunks": len(self.treatment_chunks),
|
427 |
+
"total_chunks": len(self.emergency_chunks) + len(self.treatment_chunks)
|
428 |
+
}
|
429 |
+
|
430 |
+
if self.emergency_chunks:
|
431 |
+
avg_chunk_length = np.mean([len(chunk['text']) for chunk in self.emergency_chunks])
|
432 |
+
validation_report["chunks"]["avg_emergency_chunk_length"] = avg_chunk_length
|
433 |
+
|
434 |
+
if self.treatment_chunks:
|
435 |
+
avg_chunk_length = np.mean([len(chunk['text']) for chunk in self.treatment_chunks])
|
436 |
+
validation_report["chunks"]["avg_treatment_chunk_length"] = avg_chunk_length
|
437 |
+
|
438 |
+
# Check if embeddings exist
|
439 |
+
embeddings_dir = self.models_dir / "embeddings"
|
440 |
+
if embeddings_dir.exists():
|
441 |
+
emergency_emb_file = embeddings_dir / "emergency_embeddings.npy"
|
442 |
+
treatment_emb_file = embeddings_dir / "treatment_embeddings.npy"
|
443 |
+
|
444 |
+
validation_report["embeddings"] = {
|
445 |
+
"emergency_embeddings_exist": emergency_emb_file.exists(),
|
446 |
+
"treatment_embeddings_exist": treatment_emb_file.exists()
|
447 |
+
}
|
448 |
+
|
449 |
+
if emergency_emb_file.exists():
|
450 |
+
emb = np.load(emergency_emb_file)
|
451 |
+
validation_report["embeddings"]["emergency_embeddings_shape"] = emb.shape
|
452 |
+
|
453 |
+
if treatment_emb_file.exists():
|
454 |
+
emb = np.load(treatment_emb_file)
|
455 |
+
validation_report["embeddings"]["treatment_embeddings_shape"] = emb.shape
|
456 |
+
|
457 |
+
# Save validation report
|
458 |
+
report_file = self.models_dir / "data_validation_report.json"
|
459 |
+
with open(report_file, 'w', encoding='utf-8') as f:
|
460 |
+
json.dump(validation_report, f, indent=2, default=str)
|
461 |
+
|
462 |
+
logger.info(f"Validation report saved to: {report_file}")
|
463 |
+
return validation_report
|
464 |
+
|
465 |
+
def process_all_data(self) -> Dict[str, Any]:
|
466 |
+
"""
|
467 |
+
Complete data processing pipeline
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
Processing summary
|
471 |
+
"""
|
472 |
+
logger.info("Starting complete data processing pipeline...")
|
473 |
+
|
474 |
+
# Step 1: Load filtered data
|
475 |
+
self.load_filtered_data()
|
476 |
+
|
477 |
+
# Step 2: Process chunks
|
478 |
+
emergency_chunks = self.process_emergency_chunks()
|
479 |
+
treatment_chunks = self.process_treatment_chunks()
|
480 |
+
|
481 |
+
# Step 3: Generate embeddings
|
482 |
+
emergency_embeddings = self.generate_embeddings(emergency_chunks, "emergency")
|
483 |
+
treatment_embeddings = self.generate_embeddings(treatment_chunks, "treatment")
|
484 |
+
|
485 |
+
# Step 4: Build ANNOY indices
|
486 |
+
emergency_index = self.build_annoy_index(emergency_embeddings, "emergency_index")
|
487 |
+
treatment_index = self.build_annoy_index(treatment_embeddings, "treatment_index")
|
488 |
+
|
489 |
+
# Step 5: Save data
|
490 |
+
self.save_chunks_and_embeddings(emergency_chunks, emergency_embeddings, "emergency")
|
491 |
+
self.save_chunks_and_embeddings(treatment_chunks, treatment_embeddings, "treatment")
|
492 |
+
|
493 |
+
# Step 6: Validate data quality
|
494 |
+
validation_report = self.validate_data_quality()
|
495 |
+
|
496 |
+
# Summary
|
497 |
+
summary = {
|
498 |
+
"status": "completed",
|
499 |
+
"emergency_chunks": len(emergency_chunks),
|
500 |
+
"treatment_chunks": len(treatment_chunks),
|
501 |
+
"emergency_embeddings_shape": emergency_embeddings.shape,
|
502 |
+
"treatment_embeddings_shape": treatment_embeddings.shape,
|
503 |
+
"indices_created": ["emergency_index.ann", "treatment_index.ann"],
|
504 |
+
"validation_report": validation_report
|
505 |
+
}
|
506 |
+
|
507 |
+
logger.info("Data processing pipeline completed successfully!")
|
508 |
+
logger.info(f"Summary: {summary}")
|
509 |
+
|
510 |
+
return summary
|
511 |
+
|
512 |
+
def main():
|
513 |
+
"""Main function for testing the data processor"""
|
514 |
+
# Initialize processor
|
515 |
+
processor = DataProcessor()
|
516 |
+
|
517 |
+
# Run complete pipeline
|
518 |
+
summary = processor.process_all_data()
|
519 |
+
|
520 |
+
print("\n" + "="*50)
|
521 |
+
print("DATA PROCESSING COMPLETED")
|
522 |
+
print("="*50)
|
523 |
+
print(f"Emergency chunks: {summary['emergency_chunks']}")
|
524 |
+
print(f"Treatment chunks: {summary['treatment_chunks']}")
|
525 |
+
print(f"Emergency embeddings: {summary['emergency_embeddings_shape']}")
|
526 |
+
print(f"Treatment embeddings: {summary['treatment_embeddings_shape']}")
|
527 |
+
print(f"Indices created: {summary['indices_created']}")
|
528 |
+
print("="*50)
|
529 |
+
|
530 |
+
if __name__ == "__main__":
|
531 |
+
main()
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Test script for data_processing.py
|
3 |
+
|
4 |
+
This script tests the basic functionality without running the full pipeline
|
5 |
+
to ensure everything is working correctly before proceeding with embedding generation.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import sys
|
9 |
+
import pandas as pd
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
# Add src to path
|
13 |
+
sys.path.append(str(Path(__file__).parent.parent.resolve() / "src"))
|
14 |
+
|
15 |
+
from data_processing import DataProcessor
|
16 |
+
import logging
|
17 |
+
|
18 |
+
# Setup logging
|
19 |
+
logging.basicConfig(level=logging.INFO)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
def test_data_loading():
|
23 |
+
"""Test data loading functionality"""
|
24 |
+
print("="*50)
|
25 |
+
print("TESTING DATA LOADING")
|
26 |
+
print("="*50)
|
27 |
+
|
28 |
+
try:
|
29 |
+
# Initialize processor with explicit base directory
|
30 |
+
base_dir = Path(__file__).parent.parent.resolve()
|
31 |
+
processor = DataProcessor(base_dir=str(base_dir))
|
32 |
+
|
33 |
+
# Test data loading
|
34 |
+
emergency_data, treatment_data = processor.load_filtered_data()
|
35 |
+
|
36 |
+
print(f"✅ Emergency data loaded: {len(emergency_data)} records")
|
37 |
+
print(f"✅ Treatment data loaded: {len(treatment_data)} records")
|
38 |
+
|
39 |
+
# Check data structure
|
40 |
+
print("\nEmergency data columns:", list(emergency_data.columns))
|
41 |
+
print("Treatment data columns:", list(treatment_data.columns))
|
42 |
+
|
43 |
+
# Show sample data
|
44 |
+
if len(emergency_data) > 0:
|
45 |
+
print(f"\nSample emergency matched keywords: {emergency_data['matched'].iloc[0]}")
|
46 |
+
|
47 |
+
if len(treatment_data) > 0:
|
48 |
+
print(f"Sample treatment matched keywords: {treatment_data['treatment_matched'].iloc[0]}")
|
49 |
+
|
50 |
+
return True
|
51 |
+
|
52 |
+
except Exception as e:
|
53 |
+
print(f"❌ Data loading failed: {e}")
|
54 |
+
return False
|
55 |
+
|
56 |
+
def test_chunking():
|
57 |
+
"""Test chunking functionality"""
|
58 |
+
print("\n" + "="*50)
|
59 |
+
print("TESTING CHUNKING FUNCTIONALITY")
|
60 |
+
print("="*50)
|
61 |
+
|
62 |
+
try:
|
63 |
+
# Initialize processor
|
64 |
+
processor = DataProcessor()
|
65 |
+
|
66 |
+
# Load data
|
67 |
+
processor.load_filtered_data()
|
68 |
+
|
69 |
+
# Test emergency chunking (just first few records)
|
70 |
+
print("Testing emergency chunking...")
|
71 |
+
emergency_chunks = []
|
72 |
+
for idx, row in processor.emergency_data.head(3).iterrows():
|
73 |
+
if pd.notna(row.get('clean_text')) and pd.notna(row.get('matched')):
|
74 |
+
chunks = processor.create_keyword_centered_chunks(
|
75 |
+
text=row['clean_text'],
|
76 |
+
matched_keywords=row['matched'],
|
77 |
+
chunk_size=512,
|
78 |
+
doc_id=str(row.get('id', idx))
|
79 |
+
)
|
80 |
+
emergency_chunks.extend(chunks)
|
81 |
+
|
82 |
+
print(f"✅ Generated {len(emergency_chunks)} emergency chunks from 3 records")
|
83 |
+
|
84 |
+
# Test treatment chunking (just first few records)
|
85 |
+
print("Testing treatment chunking...")
|
86 |
+
treatment_chunks = []
|
87 |
+
for idx, row in processor.treatment_data.head(3).iterrows():
|
88 |
+
if (pd.notna(row.get('clean_text')) and
|
89 |
+
pd.notna(row.get('treatment_matched'))):
|
90 |
+
chunks = processor.create_dual_keyword_chunks(
|
91 |
+
text=row['clean_text'],
|
92 |
+
emergency_keywords=row.get('matched', ''),
|
93 |
+
treatment_keywords=row['treatment_matched'],
|
94 |
+
chunk_size=512,
|
95 |
+
doc_id=str(row.get('id', idx))
|
96 |
+
)
|
97 |
+
treatment_chunks.extend(chunks)
|
98 |
+
|
99 |
+
print(f"✅ Generated {len(treatment_chunks)} treatment chunks from 3 records")
|
100 |
+
|
101 |
+
# Show sample chunk
|
102 |
+
if emergency_chunks:
|
103 |
+
sample_chunk = emergency_chunks[0]
|
104 |
+
print(f"\nSample emergency chunk:")
|
105 |
+
print(f" Primary keyword: {sample_chunk['primary_keyword']}")
|
106 |
+
print(f" Text length: {len(sample_chunk['text'])}")
|
107 |
+
print(f" Text preview: {sample_chunk['text'][:100]}...")
|
108 |
+
|
109 |
+
if treatment_chunks:
|
110 |
+
sample_chunk = treatment_chunks[0]
|
111 |
+
print(f"\nSample treatment chunk:")
|
112 |
+
print(f" Primary keyword: {sample_chunk['primary_keyword']}")
|
113 |
+
print(f" Emergency keywords: {sample_chunk['emergency_keywords']}")
|
114 |
+
print(f" Text length: {len(sample_chunk['text'])}")
|
115 |
+
print(f" Text preview: {sample_chunk['text'][:100]}...")
|
116 |
+
|
117 |
+
return True
|
118 |
+
|
119 |
+
except Exception as e:
|
120 |
+
print(f"❌ Chunking test failed: {e}")
|
121 |
+
import traceback
|
122 |
+
traceback.print_exc()
|
123 |
+
return False
|
124 |
+
|
125 |
+
def test_model_loading():
|
126 |
+
"""Test if we can load the embedding model"""
|
127 |
+
print("\n" + "="*50)
|
128 |
+
print("TESTING MODEL LOADING")
|
129 |
+
print("="*50)
|
130 |
+
|
131 |
+
try:
|
132 |
+
processor = DataProcessor()
|
133 |
+
|
134 |
+
print("Loading NeuML/pubmedbert-base-embeddings...")
|
135 |
+
model = processor.load_embedding_model()
|
136 |
+
|
137 |
+
print(f"✅ Model loaded successfully: {processor.embedding_model_name}")
|
138 |
+
print(f"✅ Model max sequence length: {model.max_seq_length}")
|
139 |
+
|
140 |
+
# Test a simple encoding
|
141 |
+
test_text = "Patient presents with chest pain and shortness of breath."
|
142 |
+
embedding = model.encode([test_text])
|
143 |
+
|
144 |
+
print(f"✅ Test embedding shape: {embedding.shape}")
|
145 |
+
print(f"✅ Expected dimension: {processor.embedding_dim}")
|
146 |
+
|
147 |
+
assert embedding.shape[1] == processor.embedding_dim, f"Dimension mismatch: {embedding.shape[1]} != {processor.embedding_dim}"
|
148 |
+
|
149 |
+
return True
|
150 |
+
|
151 |
+
except Exception as e:
|
152 |
+
print(f"❌ Model loading failed: {e}")
|
153 |
+
import traceback
|
154 |
+
traceback.print_exc()
|
155 |
+
return False
|
156 |
+
|
157 |
+
def main():
|
158 |
+
"""Run all tests"""
|
159 |
+
print("Starting data processing tests...\n")
|
160 |
+
|
161 |
+
# Import pandas here since it's used in chunking test
|
162 |
+
import pandas as pd
|
163 |
+
|
164 |
+
tests = [
|
165 |
+
test_data_loading,
|
166 |
+
test_chunking,
|
167 |
+
test_model_loading
|
168 |
+
]
|
169 |
+
|
170 |
+
results = []
|
171 |
+
for test in tests:
|
172 |
+
result = test()
|
173 |
+
results.append(result)
|
174 |
+
|
175 |
+
print("\n" + "="*50)
|
176 |
+
print("TEST SUMMARY")
|
177 |
+
print("="*50)
|
178 |
+
|
179 |
+
for i, (test, result) in enumerate(zip(tests, results), 1):
|
180 |
+
status = "✅ PASSED" if result else "❌ FAILED"
|
181 |
+
print(f"{i}. {test.__name__}: {status}")
|
182 |
+
|
183 |
+
all_passed = all(results)
|
184 |
+
|
185 |
+
if all_passed:
|
186 |
+
print("\n🎉 All tests passed! Ready to proceed with full pipeline.")
|
187 |
+
print("\nTo run the full data processing pipeline:")
|
188 |
+
print("cd FinalProject && python src/data_processing.py")
|
189 |
+
else:
|
190 |
+
print("\n⚠️ Some tests failed. Please check the issues above.")
|
191 |
+
|
192 |
+
return all_passed
|
193 |
+
|
194 |
+
if __name__ == "__main__":
|
195 |
+
main()
|