Spaces:
Sleeping
Sleeping
YanBoChen
commited on
Commit
·
c414f60
1
Parent(s):
37c6713
🚀 Implement Advanced Condition Extraction for Medical Query Processing
Browse files## 主要變更
- 新增 `src/medical_conditions.py`:集中管理醫學條件和關鍵詞配置
- 更新 `src/user_prompt.py`:實現多層 Fallback 的 Condition Extraction 機制
## 新增文件
- `src/medical_conditions.py`
- 集中醫學條件映射
- 提供條件關鍵詞查詢函數
- 支持條件驗證和詳細信息檢索
- `src/user_prompt.py`
- 實現四層 Condition Extraction 策略
- 支持預定義映射、Meditron 提取
- 添加語義搜索和通用醫學搜索 Fallback
## 參考文檔
- `docs/next/20250729Condition_Conversion_simplified.md`
- `docs/next/20250729Condition_Conversion_more_details.md`
- `docs/next/20250729Test_Retrieval.md`
## 實現特點
- 多層 Fallback 機制
- 靈活的條件提取
- 可擴展的醫學條件配置
- 用戶確認機制
## 性能目標
- 預定義映射:< 10ms
- Meditron 提取:< 2000ms
- 語義搜索:< 1s
- 總響應時間:< 7s
## 下一步
- 完善 Meditron 整合
- 添加更多醫學條件
- 優化語義搜索算法
Signed-off-by: OnCall.ai Team <[email protected]>
- src/medical_conditions.py +99 -0
- src/user_prompt.py +321 -0
src/medical_conditions.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
OnCall.ai Medical Conditions Configuration
|
3 |
+
|
4 |
+
This module provides centralized configuration for:
|
5 |
+
1. Predefined medical conditions
|
6 |
+
2. Condition-to-keyword mappings
|
7 |
+
3. Fallback condition keywords
|
8 |
+
|
9 |
+
Author: OnCall.ai Team
|
10 |
+
Date: 2025-07-29
|
11 |
+
"""
|
12 |
+
|
13 |
+
from typing import Dict, Optional
|
14 |
+
|
15 |
+
# Comprehensive Condition-to-Keyword Mapping
|
16 |
+
CONDITION_KEYWORD_MAPPING: Dict[str, Dict[str, str]] = {
|
17 |
+
"acute myocardial infarction": {
|
18 |
+
"emergency": "MI|chest pain|cardiac arrest",
|
19 |
+
"treatment": "aspirin|nitroglycerin|thrombolytic|PCI"
|
20 |
+
},
|
21 |
+
"acute stroke": {
|
22 |
+
"emergency": "stroke|neurological deficit|sudden weakness",
|
23 |
+
"treatment": "tPA|thrombolysis|stroke unit care"
|
24 |
+
},
|
25 |
+
"pulmonary embolism": {
|
26 |
+
"emergency": "chest pain|shortness of breath|sudden dyspnea",
|
27 |
+
"treatment": "anticoagulation|heparin|embolectomy"
|
28 |
+
},
|
29 |
+
# 從 @20250729Test_Retrieval.md 擴展的條件
|
30 |
+
"acute_ischemic_stroke": {
|
31 |
+
"emergency": "ischemic stroke|neurological deficit",
|
32 |
+
"treatment": "tPA|stroke unit management"
|
33 |
+
},
|
34 |
+
"hemorrhagic_stroke": {
|
35 |
+
"emergency": "hemorrhagic stroke|intracranial bleeding",
|
36 |
+
"treatment": "blood pressure control|neurosurgery"
|
37 |
+
},
|
38 |
+
"transient_ischemic_attack": {
|
39 |
+
"emergency": "TIA|temporary stroke symptoms",
|
40 |
+
"treatment": "antiplatelet|lifestyle modification"
|
41 |
+
},
|
42 |
+
"acute_coronary_syndrome": {
|
43 |
+
"emergency": "ACS|chest pain|ECG changes",
|
44 |
+
"treatment": "antiplatelet|statins|cardiac monitoring"
|
45 |
+
}
|
46 |
+
}
|
47 |
+
|
48 |
+
# Fallback Condition Keywords
|
49 |
+
FALLBACK_CONDITION_KEYWORDS: Dict[str, str] = {
|
50 |
+
"acute_ischemic_stroke": "acute ischemic stroke treatment",
|
51 |
+
"hemorrhagic_stroke": "hemorrhagic stroke management",
|
52 |
+
"transient_ischemic_attack": "TIA treatment protocol",
|
53 |
+
"acute_coronary_syndrome": "ACS treatment guidelines",
|
54 |
+
"stable_angina": "stable angina management",
|
55 |
+
"non_cardiac_chest_pain": "non-cardiac chest pain evaluation",
|
56 |
+
"witnessed_cardiac_arrest": "witnessed cardiac arrest protocol",
|
57 |
+
"unwitnessed_cardiac_arrest": "unwitnessed cardiac arrest management",
|
58 |
+
"post_resuscitation_care": "post-resuscitation care guidelines"
|
59 |
+
}
|
60 |
+
|
61 |
+
def get_condition_keywords(specific_condition: str) -> Optional[str]:
|
62 |
+
"""
|
63 |
+
Retrieve fallback keywords for a specific condition
|
64 |
+
|
65 |
+
Args:
|
66 |
+
specific_condition: Medical condition name
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
Corresponding keywords or the original condition
|
70 |
+
"""
|
71 |
+
return FALLBACK_CONDITION_KEYWORDS.get(specific_condition, specific_condition)
|
72 |
+
|
73 |
+
def validate_condition(condition: str) -> bool:
|
74 |
+
"""
|
75 |
+
Check if a condition exists in our predefined mapping
|
76 |
+
|
77 |
+
Args:
|
78 |
+
condition: Medical condition to validate
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
Boolean indicating condition validity
|
82 |
+
"""
|
83 |
+
return condition.lower() in {k.lower() for k in CONDITION_KEYWORD_MAPPING.keys()}
|
84 |
+
|
85 |
+
def get_condition_details(condition: str) -> Optional[Dict[str, str]]:
|
86 |
+
"""
|
87 |
+
Retrieve detailed information for a specific condition
|
88 |
+
|
89 |
+
Args:
|
90 |
+
condition: Medical condition name
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
Dict with emergency and treatment keywords, or None
|
94 |
+
"""
|
95 |
+
normalized_condition = condition.lower()
|
96 |
+
for key, value in CONDITION_KEYWORD_MAPPING.items():
|
97 |
+
if key.lower() == normalized_condition:
|
98 |
+
return value
|
99 |
+
return None
|
src/user_prompt.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
OnCall.ai User Prompt Processing Module
|
3 |
+
|
4 |
+
This module handles:
|
5 |
+
1. Condition extraction from user queries
|
6 |
+
2. Keyword mapping
|
7 |
+
3. User confirmation workflow
|
8 |
+
4. Fallback mechanisms
|
9 |
+
|
10 |
+
Author: OnCall.ai Team
|
11 |
+
Date: 2025-07-29
|
12 |
+
"""
|
13 |
+
|
14 |
+
import logging
|
15 |
+
from typing import Dict, Optional, Any, List
|
16 |
+
from sentence_transformers import SentenceTransformer
|
17 |
+
import numpy as np # Added missing import for numpy
|
18 |
+
|
19 |
+
# Import our centralized medical conditions configuration
|
20 |
+
from medical_conditions import (
|
21 |
+
CONDITION_KEYWORD_MAPPING,
|
22 |
+
get_condition_keywords,
|
23 |
+
validate_condition
|
24 |
+
)
|
25 |
+
|
26 |
+
# Configure logging
|
27 |
+
logging.basicConfig(
|
28 |
+
level=logging.INFO,
|
29 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
30 |
+
)
|
31 |
+
logger = logging.getLogger(__name__)
|
32 |
+
|
33 |
+
class UserPromptProcessor:
|
34 |
+
def __init__(self, meditron_client=None, retrieval_system=None):
|
35 |
+
"""
|
36 |
+
Initialize UserPromptProcessor with optional Meditron and retrieval system
|
37 |
+
|
38 |
+
Args:
|
39 |
+
meditron_client: Optional Meditron client for advanced condition extraction
|
40 |
+
retrieval_system: Optional retrieval system for semantic search
|
41 |
+
"""
|
42 |
+
self.meditron_client = meditron_client
|
43 |
+
self.retrieval_system = retrieval_system
|
44 |
+
self.embedding_model = SentenceTransformer("NeuML/pubmedbert-base-embeddings")
|
45 |
+
logger.info("UserPromptProcessor initialized")
|
46 |
+
|
47 |
+
def extract_condition_keywords(self, user_query: str) -> Dict[str, str]:
|
48 |
+
"""
|
49 |
+
Extract condition keywords with multi-level fallback
|
50 |
+
|
51 |
+
Args:
|
52 |
+
user_query: User's medical query
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
Dict with condition and keywords
|
56 |
+
"""
|
57 |
+
# Level 1: Predefined Mapping (Fast Path)
|
58 |
+
predefined_result = self._predefined_mapping(user_query)
|
59 |
+
if predefined_result:
|
60 |
+
return predefined_result
|
61 |
+
|
62 |
+
# Level 2: Meditron Extraction (if available)
|
63 |
+
if self.meditron_client:
|
64 |
+
meditron_result = self._extract_with_meditron(user_query)
|
65 |
+
if meditron_result:
|
66 |
+
return meditron_result
|
67 |
+
|
68 |
+
# Level 3: Semantic Search Fallback
|
69 |
+
semantic_result = self._semantic_search_fallback(user_query)
|
70 |
+
if semantic_result:
|
71 |
+
return semantic_result
|
72 |
+
|
73 |
+
# Level 4: Generic Medical Search
|
74 |
+
generic_result = self._generic_medical_search(user_query)
|
75 |
+
if generic_result:
|
76 |
+
return generic_result
|
77 |
+
|
78 |
+
# No match found
|
79 |
+
return {
|
80 |
+
'condition': '',
|
81 |
+
'emergency_keywords': '',
|
82 |
+
'treatment_keywords': ''
|
83 |
+
}
|
84 |
+
|
85 |
+
def _predefined_mapping(self, user_query: str) -> Optional[Dict[str, str]]:
|
86 |
+
"""
|
87 |
+
Fast predefined condition mapping
|
88 |
+
|
89 |
+
Args:
|
90 |
+
user_query: User's medical query
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
Mapped condition keywords or None
|
94 |
+
"""
|
95 |
+
query_lower = user_query.lower()
|
96 |
+
|
97 |
+
for condition, mappings in CONDITION_KEYWORD_MAPPING.items():
|
98 |
+
if condition.lower() in query_lower:
|
99 |
+
logger.info(f"Matched predefined condition: {condition}")
|
100 |
+
return {
|
101 |
+
'condition': condition,
|
102 |
+
'emergency_keywords': mappings['emergency'],
|
103 |
+
'treatment_keywords': mappings['treatment']
|
104 |
+
}
|
105 |
+
|
106 |
+
return None
|
107 |
+
|
108 |
+
def _extract_with_meditron(self, user_query: str) -> Optional[Dict[str, str]]:
|
109 |
+
"""
|
110 |
+
Use Meditron for advanced condition extraction
|
111 |
+
|
112 |
+
Args:
|
113 |
+
user_query: User's medical query
|
114 |
+
|
115 |
+
Returns:
|
116 |
+
Dict with condition and keywords, or None
|
117 |
+
"""
|
118 |
+
if not self.meditron_client:
|
119 |
+
return None
|
120 |
+
|
121 |
+
try:
|
122 |
+
meditron_response = self.meditron_client.analyze_medical_query(
|
123 |
+
query=user_query,
|
124 |
+
max_tokens=100,
|
125 |
+
timeout=2.0
|
126 |
+
)
|
127 |
+
|
128 |
+
extracted_condition = meditron_response.get('extracted_condition', '')
|
129 |
+
|
130 |
+
if extracted_condition and validate_condition(extracted_condition):
|
131 |
+
condition_details = get_condition_keywords(extracted_condition)
|
132 |
+
return {
|
133 |
+
'condition': extracted_condition,
|
134 |
+
'emergency_keywords': condition_details.get('emergency', ''),
|
135 |
+
'treatment_keywords': condition_details.get('treatment', '')
|
136 |
+
}
|
137 |
+
|
138 |
+
return None
|
139 |
+
|
140 |
+
except Exception as e:
|
141 |
+
logger.error(f"Meditron condition extraction error: {e}")
|
142 |
+
return None
|
143 |
+
|
144 |
+
def _semantic_search_fallback(self, user_query: str) -> Optional[Dict[str, str]]:
|
145 |
+
"""
|
146 |
+
Perform semantic search for condition extraction
|
147 |
+
|
148 |
+
Args:
|
149 |
+
user_query: User's medical query
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
Dict with condition and keywords, or None
|
153 |
+
"""
|
154 |
+
if not self.retrieval_system:
|
155 |
+
return None
|
156 |
+
|
157 |
+
try:
|
158 |
+
# Perform semantic search on sliding window chunks
|
159 |
+
semantic_results = self.retrieval_system.search_sliding_window_chunks(user_query)
|
160 |
+
|
161 |
+
if semantic_results:
|
162 |
+
# Extract condition from top semantic result
|
163 |
+
top_result = semantic_results[0]
|
164 |
+
condition = self._infer_condition_from_text(top_result['text'])
|
165 |
+
|
166 |
+
if condition and validate_condition(condition):
|
167 |
+
condition_details = get_condition_keywords(condition)
|
168 |
+
return {
|
169 |
+
'condition': condition,
|
170 |
+
'emergency_keywords': condition_details.get('emergency', ''),
|
171 |
+
'treatment_keywords': condition_details.get('treatment', ''),
|
172 |
+
'semantic_confidence': top_result.get('distance', 0)
|
173 |
+
}
|
174 |
+
|
175 |
+
return None
|
176 |
+
|
177 |
+
except Exception as e:
|
178 |
+
logger.error(f"Semantic search fallback error: {e}")
|
179 |
+
return None
|
180 |
+
|
181 |
+
def _generic_medical_search(self, user_query: str) -> Optional[Dict[str, str]]:
|
182 |
+
"""
|
183 |
+
Perform generic medical search as final fallback
|
184 |
+
|
185 |
+
Args:
|
186 |
+
user_query: User's medical query
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
Dict with generic medical keywords
|
190 |
+
"""
|
191 |
+
generic_medical_terms = [
|
192 |
+
"medical", "treatment", "management", "protocol",
|
193 |
+
"guidelines", "emergency", "acute", "chronic"
|
194 |
+
]
|
195 |
+
|
196 |
+
generic_query = f"{user_query} medical treatment"
|
197 |
+
|
198 |
+
try:
|
199 |
+
# Perform generic medical search
|
200 |
+
generic_results = self.retrieval_system.search_generic_medical_content(generic_query)
|
201 |
+
|
202 |
+
if generic_results:
|
203 |
+
return {
|
204 |
+
'condition': 'generic medical query',
|
205 |
+
'emergency_keywords': 'medical|emergency',
|
206 |
+
'treatment_keywords': 'treatment|management',
|
207 |
+
'generic_confidence': 0.5
|
208 |
+
}
|
209 |
+
|
210 |
+
return None
|
211 |
+
|
212 |
+
except Exception as e:
|
213 |
+
logger.error(f"Generic medical search error: {e}")
|
214 |
+
return None
|
215 |
+
|
216 |
+
def _infer_condition_from_text(self, text: str) -> Optional[str]:
|
217 |
+
"""
|
218 |
+
Infer medical condition from text using embedding similarity
|
219 |
+
|
220 |
+
Args:
|
221 |
+
text: Input medical text
|
222 |
+
|
223 |
+
Returns:
|
224 |
+
Inferred condition or None
|
225 |
+
"""
|
226 |
+
# Implement a simple condition inference using embedding similarity
|
227 |
+
# This is a placeholder and would need more sophisticated implementation
|
228 |
+
conditions = list(CONDITION_KEYWORD_MAPPING.keys())
|
229 |
+
text_embedding = self.embedding_model.encode(text)
|
230 |
+
condition_embeddings = [self.embedding_model.encode(condition) for condition in conditions]
|
231 |
+
|
232 |
+
similarities = [
|
233 |
+
np.dot(text_embedding, condition_emb) /
|
234 |
+
(np.linalg.norm(text_embedding) * np.linalg.norm(condition_emb))
|
235 |
+
for condition_emb in condition_embeddings
|
236 |
+
]
|
237 |
+
|
238 |
+
max_similarity_index = np.argmax(similarities)
|
239 |
+
return conditions[max_similarity_index] if similarities[max_similarity_index] > 0.7 else None
|
240 |
+
|
241 |
+
def validate_keywords(self, keywords: Dict[str, str]) -> bool:
|
242 |
+
"""
|
243 |
+
Validate if extracted keywords exist in our medical indices
|
244 |
+
|
245 |
+
Args:
|
246 |
+
keywords: Dict of emergency and treatment keywords
|
247 |
+
|
248 |
+
Returns:
|
249 |
+
Boolean indicating keyword validity
|
250 |
+
"""
|
251 |
+
emergency_kws = keywords.get('emergency_keywords', '').split('|')
|
252 |
+
treatment_kws = keywords.get('treatment_keywords', '').split('|')
|
253 |
+
|
254 |
+
# Basic validation: check if any keyword is non-empty
|
255 |
+
return any(kw.strip() for kw in emergency_kws + treatment_kws)
|
256 |
+
|
257 |
+
def handle_user_confirmation(self, extracted_info: Dict[str, str]) -> Dict[str, Any]:
|
258 |
+
"""
|
259 |
+
Handle user confirmation for extracted condition and keywords
|
260 |
+
|
261 |
+
Args:
|
262 |
+
extracted_info: Dict with condition and keyword information
|
263 |
+
|
264 |
+
Returns:
|
265 |
+
Dict with confirmation status and options
|
266 |
+
"""
|
267 |
+
# If no condition found, request user to rephrase
|
268 |
+
if not extracted_info.get('condition'):
|
269 |
+
return {
|
270 |
+
'type': 'rephrase_needed',
|
271 |
+
'message': "Could not identify a specific medical condition. Please rephrase your query.",
|
272 |
+
'suggestions': [
|
273 |
+
"Try: 'how to treat chest pain'",
|
274 |
+
"Try: 'acute stroke management'",
|
275 |
+
"Try: 'pulmonary embolism treatment'"
|
276 |
+
]
|
277 |
+
}
|
278 |
+
|
279 |
+
# Prepare confirmation message
|
280 |
+
confirmation_message = f"""
|
281 |
+
I understand you're asking about: "{extracted_info.get('condition', 'Unknown Condition')}"
|
282 |
+
|
283 |
+
Extracted Keywords:
|
284 |
+
- Emergency: {extracted_info.get('emergency_keywords', 'None')}
|
285 |
+
- Treatment: {extracted_info.get('treatment_keywords', 'None')}
|
286 |
+
|
287 |
+
Please confirm:
|
288 |
+
1) Yes, proceed with search
|
289 |
+
2) No, please rephrase my query
|
290 |
+
3) Modify keywords
|
291 |
+
"""
|
292 |
+
|
293 |
+
return {
|
294 |
+
'type': 'confirmation_needed',
|
295 |
+
'message': confirmation_message,
|
296 |
+
'extracted_info': extracted_info
|
297 |
+
}
|
298 |
+
|
299 |
+
def main():
|
300 |
+
"""
|
301 |
+
Example usage and testing of UserPromptProcessor
|
302 |
+
"""
|
303 |
+
processor = UserPromptProcessor()
|
304 |
+
|
305 |
+
# Test cases
|
306 |
+
test_queries = [
|
307 |
+
"how to treat acute MI?",
|
308 |
+
"patient with stroke symptoms",
|
309 |
+
"chest pain and breathing difficulty"
|
310 |
+
]
|
311 |
+
|
312 |
+
for query in test_queries:
|
313 |
+
print(f"\nQuery: {query}")
|
314 |
+
result = processor.extract_condition_keywords(query)
|
315 |
+
print("Extracted Keywords:", result)
|
316 |
+
|
317 |
+
confirmation = processor.handle_user_confirmation(result)
|
318 |
+
print("Confirmation:", confirmation['message'])
|
319 |
+
|
320 |
+
if __name__ == "__main__":
|
321 |
+
main()
|