ybelkada commited on
Commit
dfa0d37
·
1 Parent(s): b62b9fa

Update coco_utils.py

Browse files
Files changed (1) hide show
  1. coco_utils.py +87 -20
coco_utils.py CHANGED
@@ -27,24 +27,6 @@ def is_dist_avail_and_initialized():
27
  return False
28
  return True
29
 
30
- class CocoDetection(torchvision.datasets.CocoDetection):
31
- def __init__(self, img_folder, feature_extractor, ann_file):
32
- super(CocoDetection, self).__init__(img_folder, ann_file)
33
- self.feature_extractor = feature_extractor
34
-
35
- def __getitem__(self, idx):
36
- # read in PIL image and target in COCO format
37
- img, target = super(CocoDetection, self).__getitem__(idx)
38
-
39
- # preprocess image and target (converting target to DETR format, resizing + normalization of both image and target)
40
- image_id = self.ids[idx]
41
- target = {'image_id': image_id, 'annotations': target}
42
- encoding = self.feature_extractor(images=img, annotations=target, return_tensors="pt")
43
- pixel_values = encoding["pixel_values"].squeeze() # remove batch dimension
44
- target = encoding["labels"][0] # remove batch dimension
45
-
46
- return pixel_values, target
47
-
48
 
49
  def get_world_size():
50
  if not is_dist_avail_and_initialized():
@@ -150,6 +132,83 @@ class CocoEvaluator(object):
150
  for iou_type, coco_eval in self.coco_eval.items():
151
  print("IoU metric: {}".format(iou_type))
152
  coco_eval.summarize()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
 
154
  def prepare(self, predictions, iou_type):
155
  if iou_type == "bbox":
@@ -168,9 +227,17 @@ class CocoEvaluator(object):
168
  continue
169
 
170
  boxes = prediction["boxes"]
 
 
171
  boxes = convert_to_xywh(boxes).tolist()
172
- scores = prediction["scores"].tolist()
173
- labels = prediction["labels"].tolist()
 
 
 
 
 
 
174
 
175
  coco_results.extend(
176
  [
 
27
  return False
28
  return True
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
  def get_world_size():
32
  if not is_dist_avail_and_initialized():
 
132
  for iou_type, coco_eval in self.coco_eval.items():
133
  print("IoU metric: {}".format(iou_type))
134
  coco_eval.summarize()
135
+
136
+ def _post_process_stats(self, stats, coco_eval_object, iou_type='bbox'):
137
+ # bbox & segm:
138
+ # stats[0] = _summarize(1)
139
+ # stats[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2])
140
+ # stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2])
141
+ # stats[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2])
142
+ # stats[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2])
143
+ # stats[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2])
144
+ # stats[6] = _summarize(0, maxDets=self.params.maxDets[0])
145
+ # stats[7] = _summarize(0, maxDets=self.params.maxDets[1])
146
+ # stats[8] = _summarize(0, maxDets=self.params.maxDets[2])
147
+ # stats[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2])
148
+ # stats[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2])
149
+ # stats[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2])
150
+
151
+ # keypoints:
152
+ # stats[0] = _summarize(1, maxDets=20)
153
+ # stats[1] = _summarize(1, maxDets=20, iouThr=.5)
154
+ # stats[2] = _summarize(1, maxDets=20, iouThr=.75)
155
+ # stats[3] = _summarize(1, maxDets=20, areaRng='medium')
156
+ # stats[4] = _summarize(1, maxDets=20, areaRng='large')
157
+ # stats[5] = _summarize(0, maxDets=20)
158
+ # stats[6] = _summarize(0, maxDets=20, iouThr=.5)
159
+ # stats[7] = _summarize(0, maxDets=20, iouThr=.75)
160
+ # stats[8] = _summarize(0, maxDets=20, areaRng='medium')
161
+ # stats[9] = _summarize(0, maxDets=20, areaRng='large')
162
+ if iou_type not in ['bbox', 'segm', 'keypoints']:
163
+ raise ValueError(f"iou_type '{iou_type}' not supported")
164
+
165
+ current_max_dets = coco_eval_object.params.maxDets
166
+
167
+ index_to_title = {
168
+ "bbox": {
169
+ 0: f"AP-IoU=0.50:0.95-area=all-maxDets={current_max_dets[2]}",
170
+ 1: f"AP-IoU=0.50-area=all-maxDets={current_max_dets[2]}",
171
+ 2: f"AP-IoU=0.75-area=all-maxDets={current_max_dets[2]}",
172
+ 3: f"AP-IoU=0.50:0.95-area=small-maxDets={current_max_dets[2]}",
173
+ 4: f"AP-IoU=0.50:0.95-area=medium-maxDets={current_max_dets[2]}",
174
+ 5: f"AP-IoU=0.50:0.95-area=large-maxDets={current_max_dets[2]}",
175
+ 6: f"AR-IoU=0.50:0.95-area=all-maxDets={current_max_dets[0]}",
176
+ 7: f"AR-IoU=0.50:0.95-area=all-maxDets={current_max_dets[1]}",
177
+ 8: f"AR-IoU=0.50:0.95-area=all-maxDets={current_max_dets[2]}",
178
+ 9: f"AR-IoU=0.50:0.95-area=small-maxDets={current_max_dets[2]}",
179
+ 10: f"AR-IoU=0.50:0.95-area=medium-maxDets={current_max_dets[2]}",
180
+ 11: f"AR-IoU=0.50:0.95-area=large-maxDets={current_max_dets[2]}",
181
+ },
182
+ "keypoints":
183
+ {
184
+ 0: "AP-IoU=0.50:0.95-area=all-maxDets=20",
185
+ 1: "AP-IoU=0.50-area=all-maxDets=20",
186
+ 2: "AP-IoU=0.75-area=all-maxDets=20",
187
+ 3: "AP-IoU=0.50:0.95-area=medium-maxDets=20",
188
+ 4: "AP-IoU=0.50:0.95-area=large-maxDets=20",
189
+ 5: "AR-IoU=0.50:0.95-area=all-maxDets=20",
190
+ 6: "AR-IoU=0.50-area=all-maxDets=20",
191
+ 7: "AR-IoU=0.75-area=all-maxDets=20",
192
+ 8: "AR-IoU=0.50:0.95-area=medium-maxDets=20",
193
+ 9: "AR-IoU=0.50:0.95-area=large-maxDets=20",
194
+ },
195
+ }
196
+
197
+ output_dict = {}
198
+ for index, stat in enumerate(stats):
199
+ output_dict[index_to_title[iou_type][index]] = stat
200
+
201
+ return output_dict
202
+
203
+
204
+ def get_results(self):
205
+ output_dict = {}
206
+
207
+ for iou_type, coco_eval in self.coco_eval.items():
208
+ if iou_type == 'segm':
209
+ iou_type = 'bbox'
210
+ output_dict[f"iou_{iou_type}"] = self._post_process_stats(coco_eval.stats, coco_eval, iou_type)
211
+ return output_dict
212
 
213
  def prepare(self, predictions, iou_type):
214
  if iou_type == "bbox":
 
227
  continue
228
 
229
  boxes = prediction["boxes"]
230
+ if not isinstance(boxes, torch.Tensor):
231
+ boxes = torch.as_tensor(boxes)
232
  boxes = convert_to_xywh(boxes).tolist()
233
+
234
+ scores = prediction["scores"]
235
+ if not isinstance(scores, list):
236
+ scores = scores.tolist()
237
+
238
+ labels = prediction["labels"]
239
+ if not isinstance(labels, list):
240
+ labels = prediction["labels"].tolist()
241
 
242
  coco_results.extend(
243
  [