Spaces:
Runtime error
Runtime error
Update coco_utils.py
Browse files- coco_utils.py +87 -20
coco_utils.py
CHANGED
@@ -27,24 +27,6 @@ def is_dist_avail_and_initialized():
|
|
27 |
return False
|
28 |
return True
|
29 |
|
30 |
-
class CocoDetection(torchvision.datasets.CocoDetection):
|
31 |
-
def __init__(self, img_folder, feature_extractor, ann_file):
|
32 |
-
super(CocoDetection, self).__init__(img_folder, ann_file)
|
33 |
-
self.feature_extractor = feature_extractor
|
34 |
-
|
35 |
-
def __getitem__(self, idx):
|
36 |
-
# read in PIL image and target in COCO format
|
37 |
-
img, target = super(CocoDetection, self).__getitem__(idx)
|
38 |
-
|
39 |
-
# preprocess image and target (converting target to DETR format, resizing + normalization of both image and target)
|
40 |
-
image_id = self.ids[idx]
|
41 |
-
target = {'image_id': image_id, 'annotations': target}
|
42 |
-
encoding = self.feature_extractor(images=img, annotations=target, return_tensors="pt")
|
43 |
-
pixel_values = encoding["pixel_values"].squeeze() # remove batch dimension
|
44 |
-
target = encoding["labels"][0] # remove batch dimension
|
45 |
-
|
46 |
-
return pixel_values, target
|
47 |
-
|
48 |
|
49 |
def get_world_size():
|
50 |
if not is_dist_avail_and_initialized():
|
@@ -150,6 +132,83 @@ class CocoEvaluator(object):
|
|
150 |
for iou_type, coco_eval in self.coco_eval.items():
|
151 |
print("IoU metric: {}".format(iou_type))
|
152 |
coco_eval.summarize()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
def prepare(self, predictions, iou_type):
|
155 |
if iou_type == "bbox":
|
@@ -168,9 +227,17 @@ class CocoEvaluator(object):
|
|
168 |
continue
|
169 |
|
170 |
boxes = prediction["boxes"]
|
|
|
|
|
171 |
boxes = convert_to_xywh(boxes).tolist()
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
coco_results.extend(
|
176 |
[
|
|
|
27 |
return False
|
28 |
return True
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def get_world_size():
|
32 |
if not is_dist_avail_and_initialized():
|
|
|
132 |
for iou_type, coco_eval in self.coco_eval.items():
|
133 |
print("IoU metric: {}".format(iou_type))
|
134 |
coco_eval.summarize()
|
135 |
+
|
136 |
+
def _post_process_stats(self, stats, coco_eval_object, iou_type='bbox'):
|
137 |
+
# bbox & segm:
|
138 |
+
# stats[0] = _summarize(1)
|
139 |
+
# stats[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2])
|
140 |
+
# stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2])
|
141 |
+
# stats[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2])
|
142 |
+
# stats[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2])
|
143 |
+
# stats[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2])
|
144 |
+
# stats[6] = _summarize(0, maxDets=self.params.maxDets[0])
|
145 |
+
# stats[7] = _summarize(0, maxDets=self.params.maxDets[1])
|
146 |
+
# stats[8] = _summarize(0, maxDets=self.params.maxDets[2])
|
147 |
+
# stats[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2])
|
148 |
+
# stats[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2])
|
149 |
+
# stats[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2])
|
150 |
+
|
151 |
+
# keypoints:
|
152 |
+
# stats[0] = _summarize(1, maxDets=20)
|
153 |
+
# stats[1] = _summarize(1, maxDets=20, iouThr=.5)
|
154 |
+
# stats[2] = _summarize(1, maxDets=20, iouThr=.75)
|
155 |
+
# stats[3] = _summarize(1, maxDets=20, areaRng='medium')
|
156 |
+
# stats[4] = _summarize(1, maxDets=20, areaRng='large')
|
157 |
+
# stats[5] = _summarize(0, maxDets=20)
|
158 |
+
# stats[6] = _summarize(0, maxDets=20, iouThr=.5)
|
159 |
+
# stats[7] = _summarize(0, maxDets=20, iouThr=.75)
|
160 |
+
# stats[8] = _summarize(0, maxDets=20, areaRng='medium')
|
161 |
+
# stats[9] = _summarize(0, maxDets=20, areaRng='large')
|
162 |
+
if iou_type not in ['bbox', 'segm', 'keypoints']:
|
163 |
+
raise ValueError(f"iou_type '{iou_type}' not supported")
|
164 |
+
|
165 |
+
current_max_dets = coco_eval_object.params.maxDets
|
166 |
+
|
167 |
+
index_to_title = {
|
168 |
+
"bbox": {
|
169 |
+
0: f"AP-IoU=0.50:0.95-area=all-maxDets={current_max_dets[2]}",
|
170 |
+
1: f"AP-IoU=0.50-area=all-maxDets={current_max_dets[2]}",
|
171 |
+
2: f"AP-IoU=0.75-area=all-maxDets={current_max_dets[2]}",
|
172 |
+
3: f"AP-IoU=0.50:0.95-area=small-maxDets={current_max_dets[2]}",
|
173 |
+
4: f"AP-IoU=0.50:0.95-area=medium-maxDets={current_max_dets[2]}",
|
174 |
+
5: f"AP-IoU=0.50:0.95-area=large-maxDets={current_max_dets[2]}",
|
175 |
+
6: f"AR-IoU=0.50:0.95-area=all-maxDets={current_max_dets[0]}",
|
176 |
+
7: f"AR-IoU=0.50:0.95-area=all-maxDets={current_max_dets[1]}",
|
177 |
+
8: f"AR-IoU=0.50:0.95-area=all-maxDets={current_max_dets[2]}",
|
178 |
+
9: f"AR-IoU=0.50:0.95-area=small-maxDets={current_max_dets[2]}",
|
179 |
+
10: f"AR-IoU=0.50:0.95-area=medium-maxDets={current_max_dets[2]}",
|
180 |
+
11: f"AR-IoU=0.50:0.95-area=large-maxDets={current_max_dets[2]}",
|
181 |
+
},
|
182 |
+
"keypoints":
|
183 |
+
{
|
184 |
+
0: "AP-IoU=0.50:0.95-area=all-maxDets=20",
|
185 |
+
1: "AP-IoU=0.50-area=all-maxDets=20",
|
186 |
+
2: "AP-IoU=0.75-area=all-maxDets=20",
|
187 |
+
3: "AP-IoU=0.50:0.95-area=medium-maxDets=20",
|
188 |
+
4: "AP-IoU=0.50:0.95-area=large-maxDets=20",
|
189 |
+
5: "AR-IoU=0.50:0.95-area=all-maxDets=20",
|
190 |
+
6: "AR-IoU=0.50-area=all-maxDets=20",
|
191 |
+
7: "AR-IoU=0.75-area=all-maxDets=20",
|
192 |
+
8: "AR-IoU=0.50:0.95-area=medium-maxDets=20",
|
193 |
+
9: "AR-IoU=0.50:0.95-area=large-maxDets=20",
|
194 |
+
},
|
195 |
+
}
|
196 |
+
|
197 |
+
output_dict = {}
|
198 |
+
for index, stat in enumerate(stats):
|
199 |
+
output_dict[index_to_title[iou_type][index]] = stat
|
200 |
+
|
201 |
+
return output_dict
|
202 |
+
|
203 |
+
|
204 |
+
def get_results(self):
|
205 |
+
output_dict = {}
|
206 |
+
|
207 |
+
for iou_type, coco_eval in self.coco_eval.items():
|
208 |
+
if iou_type == 'segm':
|
209 |
+
iou_type = 'bbox'
|
210 |
+
output_dict[f"iou_{iou_type}"] = self._post_process_stats(coco_eval.stats, coco_eval, iou_type)
|
211 |
+
return output_dict
|
212 |
|
213 |
def prepare(self, predictions, iou_type):
|
214 |
if iou_type == "bbox":
|
|
|
227 |
continue
|
228 |
|
229 |
boxes = prediction["boxes"]
|
230 |
+
if not isinstance(boxes, torch.Tensor):
|
231 |
+
boxes = torch.as_tensor(boxes)
|
232 |
boxes = convert_to_xywh(boxes).tolist()
|
233 |
+
|
234 |
+
scores = prediction["scores"]
|
235 |
+
if not isinstance(scores, list):
|
236 |
+
scores = scores.tolist()
|
237 |
+
|
238 |
+
labels = prediction["labels"]
|
239 |
+
if not isinstance(labels, list):
|
240 |
+
labels = prediction["labels"].tolist()
|
241 |
|
242 |
coco_results.extend(
|
243 |
[
|