sygma-damage-annotation / functions.py
ychafiqui's picture
test
1ecc339
raw
history blame
2 kB
import boto3
from PIL import Image
import pandas as pd
import streamlit as st
import random
import io
s3_client = boto3.client('s3',
aws_access_key_id=st.secrets["aws_access_key_id"],
aws_secret_access_key=st.secrets["aws_secret_access_key"],
region_name='eu-west-3')
bucket_name = "sygma-global-data-storage"
folder = "car-damage-detection/scrappedImages/"
csv_folder = "car-damage-detection/CSVs/"
s3_df_path = csv_folder + "70k_old_annotations_fixed.csv"
response = s3_client.get_object(Bucket=bucket_name, Key=s3_df_path)
# df = pd.read_csv("CSVs/70k_old_annotations_fixed.csv", low_memory=False)
with io.BytesIO(response['Body'].read()) as bio:
df = pd.read_csv(bio, low_memory=False)
df = df[df['s3_available'] == True]
def get_random_image():
not_validated_imgs = df[df["validated"] == False]["img_name"].tolist()
if len(not_validated_imgs) == 0:
return None, None
image_name = random.choice(not_validated_imgs)
s3_image_path = folder + image_name
try:
response = s3_client.get_object(Bucket=bucket_name, Key=s3_image_path)
image = Image.open(io.BytesIO(response['Body'].read())).resize((1000, 800))
return image, image_name
except:
return get_random_image()
def get_img_damages(img_name):
img_row = df.loc[df["img_name"] == img_name]
damages = img_row.iloc[0, 6:].to_dict()
return damages
def process_image(img_name, annotator_name, is_car, skip, rotation, damaged_parts):
df.loc[df["img_name"] == img_name, "annotator_name"] = annotator_name
df.loc[df["img_name"] == img_name, "is_car"] = is_car
df.loc[df["img_name"] == img_name, "rotation"] = rotation
if not skip:
df.loc[df["img_name"] == img_name, damaged_parts.keys()] = damaged_parts.values()
df.loc[df["img_name"] == img_name, "validated"] = not skip
# df.to_csv("CSVs/70k_old_annotations_fixed.csv", index=False)
s3_client.put_object(Bucket=bucket_name, Key=s3_df_path, Body=df.to_csv(index=False))