|
import streamlit as st |
|
from transformers import ViTImageProcessor, AutoModelForImageClassification |
|
from PIL import Image |
|
import requests |
|
from io import BytesIO |
|
|
|
|
|
@st.cache_data |
|
def load_model(): |
|
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector') |
|
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector') |
|
return processor, model |
|
|
|
processor, model = load_model() |
|
|
|
|
|
def predict_image(image): |
|
try: |
|
|
|
inputs = processor(images=image, return_tensors="pt") |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
|
|
|
|
predicted_class_idx = logits.argmax(-1).item() |
|
predicted_label = model.config.id2label[predicted_class_idx] |
|
|
|
return predicted_label |
|
except Exception as e: |
|
return str(e) |
|
|
|
|
|
st.title("NSFW Image Classifier") |
|
|
|
|
|
query_params = st.query_params() |
|
image_url = query_params.get('image_url', [None])[0] |
|
|
|
if image_url: |
|
try: |
|
|
|
response = requests.get(image_url) |
|
image = Image.open(BytesIO(response.content)) |
|
st.image(image, caption='Image from URL', use_column_width=True) |
|
st.write("") |
|
st.write("Classifying...") |
|
|
|
|
|
prediction = predict_image(image) |
|
st.write(f"Predicted Class: {prediction}") |
|
except Exception as e: |
|
st.write(f"Error: {e}") |
|
else: |
|
st.write("Please provide an image URL using the 'image_url' query parameter.") |
|
|