Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,59 @@
|
|
1 |
-
import
|
2 |
from transformers import ViTImageProcessor, AutoModelForImageClassification
|
3 |
from PIL import Image
|
4 |
import requests
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# Load the
|
7 |
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
8 |
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def predict_image(image_url):
|
12 |
try:
|
13 |
# Load image from URL
|
@@ -26,13 +72,18 @@ def predict_image(image_url):
|
|
26 |
except Exception as e:
|
27 |
return str(e)
|
28 |
|
29 |
-
#
|
|
|
|
|
|
|
30 |
iface = gr.Interface(
|
31 |
fn=predict_image,
|
32 |
inputs=gr.Textbox(label="Image URL", placeholder="Enter image URL here"),
|
33 |
outputs=gr.Textbox(label="Predicted Class"),
|
34 |
-
title="NSFW Image Detection"
|
|
|
|
|
35 |
)
|
36 |
|
37 |
-
# Launch
|
38 |
-
iface.launch()
|
|
|
1 |
+
from flask import Flask, request, jsonify, url_for
|
2 |
from transformers import ViTImageProcessor, AutoModelForImageClassification
|
3 |
from PIL import Image
|
4 |
import requests
|
5 |
+
import threading
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# Initialize the Flask app
|
9 |
+
app = Flask(__name__)
|
10 |
|
11 |
+
# Load the processor and model outside of the route to avoid reloading it with each request
|
12 |
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
13 |
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
14 |
|
15 |
+
@app.route('/classify', methods=['POST'])
|
16 |
+
def classify_image():
|
17 |
+
try:
|
18 |
+
# Get the image URL from the POST request
|
19 |
+
data = request.get_json()
|
20 |
+
image_url = data.get('image_url')
|
21 |
+
|
22 |
+
if not image_url:
|
23 |
+
return jsonify({"error": "Image URL not provided"}), 400
|
24 |
+
|
25 |
+
# Fetch the image from the URL
|
26 |
+
image = Image.open(requests.get(image_url, stream=True).raw)
|
27 |
+
|
28 |
+
# Preprocess the image
|
29 |
+
inputs = processor(images=image, return_tensors="pt")
|
30 |
+
|
31 |
+
# Run the image through the model
|
32 |
+
outputs = model(**inputs)
|
33 |
+
logits = outputs.logits
|
34 |
+
|
35 |
+
# Get the predicted class
|
36 |
+
predicted_class_idx = logits.argmax(-1).item()
|
37 |
+
predicted_class = model.config.id2label[predicted_class_idx]
|
38 |
+
|
39 |
+
# Return the classification result
|
40 |
+
return jsonify({
|
41 |
+
"image_url": image_url,
|
42 |
+
"predicted_class": predicted_class
|
43 |
+
})
|
44 |
+
|
45 |
+
except Exception as e:
|
46 |
+
return jsonify({"error": str(e)}), 500
|
47 |
+
|
48 |
+
# Function to run the Flask app in a separate thread
|
49 |
+
def run_flask():
|
50 |
+
app.run(port=5000, debug=False, use_reloader=False)
|
51 |
+
|
52 |
+
# Launch Flask in a separate thread
|
53 |
+
flask_thread = threading.Thread(target=run_flask)
|
54 |
+
flask_thread.start()
|
55 |
+
|
56 |
+
# Gradio interface
|
57 |
def predict_image(image_url):
|
58 |
try:
|
59 |
# Load image from URL
|
|
|
72 |
except Exception as e:
|
73 |
return str(e)
|
74 |
|
75 |
+
# Construct API endpoint URL
|
76 |
+
api_url = "http://127.0.0.1:5000/classify"
|
77 |
+
|
78 |
+
# Create Gradio interface with API info
|
79 |
iface = gr.Interface(
|
80 |
fn=predict_image,
|
81 |
inputs=gr.Textbox(label="Image URL", placeholder="Enter image URL here"),
|
82 |
outputs=gr.Textbox(label="Predicted Class"),
|
83 |
+
title="NSFW Image Detection",
|
84 |
+
description=f"You can get your image classification by sending an API request to: {api_url}. Example:\n"
|
85 |
+
f"curl -X POST {api_url} -H 'Content-Type: application/json' -d '{{\"image_url\": \"YOUR_IMAGE_URL\"}}'"
|
86 |
)
|
87 |
|
88 |
+
# Launch Gradio interface
|
89 |
+
iface.launch()
|