Spaces:
Running
on
Zero
Running
on
Zero
Create flexicube.py
Browse files
trellis/representations/mesh/flexicube.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from .tables import *
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
'FlexiCubes'
|
14 |
+
]
|
15 |
+
|
16 |
+
|
17 |
+
class FlexiCubes:
|
18 |
+
def __init__(self, device="cuda"):
|
19 |
+
|
20 |
+
self.device = device
|
21 |
+
self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False)
|
22 |
+
self.num_vd_table = torch.tensor(num_vd_table,
|
23 |
+
dtype=torch.long, device=device, requires_grad=False)
|
24 |
+
self.check_table = torch.tensor(
|
25 |
+
check_table,
|
26 |
+
dtype=torch.long, device=device, requires_grad=False)
|
27 |
+
|
28 |
+
self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False)
|
29 |
+
self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False)
|
30 |
+
self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False)
|
31 |
+
self.quad_split_train = torch.tensor(
|
32 |
+
[0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False)
|
33 |
+
|
34 |
+
self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [
|
35 |
+
1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device)
|
36 |
+
self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False))
|
37 |
+
self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6,
|
38 |
+
2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False)
|
39 |
+
|
40 |
+
self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1],
|
41 |
+
dtype=torch.long, device=device)
|
42 |
+
self.dir_faces_table = torch.tensor([
|
43 |
+
[[5, 4], [3, 2], [4, 5], [2, 3]],
|
44 |
+
[[5, 4], [1, 0], [4, 5], [0, 1]],
|
45 |
+
[[3, 2], [1, 0], [2, 3], [0, 1]]
|
46 |
+
], dtype=torch.long, device=device)
|
47 |
+
self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device)
|
48 |
+
|
49 |
+
def __call__(self, voxelgrid_vertices, scalar_field, cube_idx, resolution, qef_reg_scale=1e-3,
|
50 |
+
weight_scale=0.99, beta=None, alpha=None, gamma_f=None, voxelgrid_colors=None, training=False):
|
51 |
+
surf_cubes, occ_fx8 = self._identify_surf_cubes(scalar_field, cube_idx)
|
52 |
+
if surf_cubes.sum() == 0:
|
53 |
+
return (
|
54 |
+
torch.zeros((0, 3), device=self.device),
|
55 |
+
torch.zeros((0, 3), dtype=torch.long, device=self.device),
|
56 |
+
torch.zeros((0), device=self.device),
|
57 |
+
torch.zeros((0, voxelgrid_colors.shape[-1]), device=self.device) if voxelgrid_colors is not None else None
|
58 |
+
)
|
59 |
+
beta, alpha, gamma_f = self._normalize_weights(
|
60 |
+
beta, alpha, gamma_f, surf_cubes, weight_scale)
|
61 |
+
|
62 |
+
if voxelgrid_colors is not None:
|
63 |
+
voxelgrid_colors = torch.sigmoid(voxelgrid_colors)
|
64 |
+
|
65 |
+
case_ids = self._get_case_id(occ_fx8, surf_cubes, resolution)
|
66 |
+
|
67 |
+
surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges(
|
68 |
+
scalar_field, cube_idx, surf_cubes
|
69 |
+
)
|
70 |
+
|
71 |
+
vd, L_dev, vd_gamma, vd_idx_map, vd_color = self._compute_vd(
|
72 |
+
voxelgrid_vertices, cube_idx[surf_cubes], surf_edges, scalar_field,
|
73 |
+
case_ids, beta, alpha, gamma_f, idx_map, qef_reg_scale, voxelgrid_colors)
|
74 |
+
vertices, faces, s_edges, edge_indices, vertices_color = self._triangulate(
|
75 |
+
scalar_field, surf_edges, vd, vd_gamma, edge_counts, idx_map,
|
76 |
+
vd_idx_map, surf_edges_mask, training, vd_color)
|
77 |
+
return vertices, faces, L_dev, vertices_color
|
78 |
+
|
79 |
+
def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges):
|
80 |
+
"""
|
81 |
+
Regularizer L_dev as in Equation 8
|
82 |
+
"""
|
83 |
+
dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1)
|
84 |
+
mean_l2 = torch.zeros_like(vd[:, 0])
|
85 |
+
mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float()
|
86 |
+
mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs()
|
87 |
+
return mad
|
88 |
+
|
89 |
+
def _normalize_weights(self, beta, alpha, gamma_f, surf_cubes, weight_scale):
|
90 |
+
"""
|
91 |
+
Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones.
|
92 |
+
"""
|
93 |
+
n_cubes = surf_cubes.shape[0]
|
94 |
+
|
95 |
+
if beta is not None:
|
96 |
+
beta = (torch.tanh(beta) * weight_scale + 1)
|
97 |
+
else:
|
98 |
+
beta = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device)
|
99 |
+
|
100 |
+
if alpha is not None:
|
101 |
+
alpha = (torch.tanh(alpha) * weight_scale + 1)
|
102 |
+
else:
|
103 |
+
alpha = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device)
|
104 |
+
|
105 |
+
if gamma_f is not None:
|
106 |
+
gamma_f = torch.sigmoid(gamma_f) * weight_scale + (1 - weight_scale) / 2
|
107 |
+
else:
|
108 |
+
gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device)
|
109 |
+
|
110 |
+
return beta[surf_cubes], alpha[surf_cubes], gamma_f[surf_cubes]
|
111 |
+
|
112 |
+
@torch.no_grad()
|
113 |
+
def _get_case_id(self, occ_fx8, surf_cubes, res):
|
114 |
+
"""
|
115 |
+
Obtains the ID of topology cases based on cell corner occupancy. This function resolves the
|
116 |
+
ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the
|
117 |
+
supplementary material. It should be noted that this function assumes a regular grid.
|
118 |
+
"""
|
119 |
+
case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1)
|
120 |
+
|
121 |
+
problem_config = self.check_table.to(self.device)[case_ids]
|
122 |
+
to_check = problem_config[..., 0] == 1
|
123 |
+
problem_config = problem_config[to_check]
|
124 |
+
if not isinstance(res, (list, tuple)):
|
125 |
+
res = [res, res, res]
|
126 |
+
|
127 |
+
# The 'problematic_configs' only contain configurations for surface cubes. Next, we construct a 3D array,
|
128 |
+
# 'problem_config_full', to store configurations for all cubes (with default config for non-surface cubes).
|
129 |
+
# This allows efficient checking on adjacent cubes.
|
130 |
+
problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long)
|
131 |
+
vol_idx = torch.nonzero(problem_config_full[..., 0] == 0) # N, 3
|
132 |
+
vol_idx_problem = vol_idx[surf_cubes][to_check]
|
133 |
+
problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config
|
134 |
+
vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4]
|
135 |
+
|
136 |
+
within_range = (
|
137 |
+
vol_idx_problem_adj[..., 0] >= 0) & (
|
138 |
+
vol_idx_problem_adj[..., 0] < res[0]) & (
|
139 |
+
vol_idx_problem_adj[..., 1] >= 0) & (
|
140 |
+
vol_idx_problem_adj[..., 1] < res[1]) & (
|
141 |
+
vol_idx_problem_adj[..., 2] >= 0) & (
|
142 |
+
vol_idx_problem_adj[..., 2] < res[2])
|
143 |
+
|
144 |
+
vol_idx_problem = vol_idx_problem[within_range]
|
145 |
+
vol_idx_problem_adj = vol_idx_problem_adj[within_range]
|
146 |
+
problem_config = problem_config[within_range]
|
147 |
+
problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0],
|
148 |
+
vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]]
|
149 |
+
# If two cubes with cases C16 and C19 share an ambiguous face, both cases are inverted.
|
150 |
+
to_invert = (problem_config_adj[..., 0] == 1)
|
151 |
+
idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert]
|
152 |
+
case_ids.index_put_((idx,), problem_config[to_invert][..., -1])
|
153 |
+
return case_ids
|
154 |
+
|
155 |
+
@torch.no_grad()
|
156 |
+
def _identify_surf_edges(self, scalar_field, cube_idx, surf_cubes):
|
157 |
+
"""
|
158 |
+
Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge
|
159 |
+
can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge
|
160 |
+
and marks the cube edges with this index.
|
161 |
+
"""
|
162 |
+
occ_n = scalar_field < 0
|
163 |
+
all_edges = cube_idx[surf_cubes][:, self.cube_edges].reshape(-1, 2)
|
164 |
+
unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
|
165 |
+
|
166 |
+
unique_edges = unique_edges.long()
|
167 |
+
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
|
168 |
+
|
169 |
+
surf_edges_mask = mask_edges[_idx_map]
|
170 |
+
counts = counts[_idx_map]
|
171 |
+
|
172 |
+
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_idx.device) * -1
|
173 |
+
mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_idx.device)
|
174 |
+
# Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index
|
175 |
+
# for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1.
|
176 |
+
idx_map = mapping[_idx_map]
|
177 |
+
surf_edges = unique_edges[mask_edges]
|
178 |
+
return surf_edges, idx_map, counts, surf_edges_mask
|
179 |
+
|
180 |
+
@torch.no_grad()
|
181 |
+
def _identify_surf_cubes(self, scalar_field, cube_idx):
|
182 |
+
"""
|
183 |
+
Identifies grid cubes that intersect with the underlying surface by checking if the signs at
|
184 |
+
all corners are not identical.
|
185 |
+
"""
|
186 |
+
occ_n = scalar_field < 0
|
187 |
+
occ_fx8 = occ_n[cube_idx.reshape(-1)].reshape(-1, 8)
|
188 |
+
_occ_sum = torch.sum(occ_fx8, -1)
|
189 |
+
surf_cubes = (_occ_sum > 0) & (_occ_sum < 8)
|
190 |
+
return surf_cubes, occ_fx8
|
191 |
+
|
192 |
+
def _linear_interp(self, edges_weight, edges_x):
|
193 |
+
"""
|
194 |
+
Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'.
|
195 |
+
"""
|
196 |
+
edge_dim = edges_weight.dim() - 2
|
197 |
+
assert edges_weight.shape[edge_dim] == 2
|
198 |
+
edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), -
|
199 |
+
torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)]
|
200 |
+
, edge_dim)
|
201 |
+
denominator = edges_weight.sum(edge_dim)
|
202 |
+
ue = (edges_x * edges_weight).sum(edge_dim) / denominator
|
203 |
+
return ue
|
204 |
+
|
205 |
+
def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3, qef_reg_scale):
|
206 |
+
p_bxnx3 = p_bxnx3.reshape(-1, 7, 3)
|
207 |
+
norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3)
|
208 |
+
c_bx3 = c_bx3.reshape(-1, 3)
|
209 |
+
A = norm_bxnx3
|
210 |
+
B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True)
|
211 |
+
|
212 |
+
A_reg = (torch.eye(3, device=p_bxnx3.device) * qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1)
|
213 |
+
B_reg = (qef_reg_scale * c_bx3).unsqueeze(-1)
|
214 |
+
A = torch.cat([A, A_reg], 1)
|
215 |
+
B = torch.cat([B, B_reg], 1)
|
216 |
+
dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1)
|
217 |
+
return dual_verts
|
218 |
+
|
219 |
+
def _compute_vd(self, voxelgrid_vertices, surf_cubes_fx8, surf_edges, scalar_field,
|
220 |
+
case_ids, beta, alpha, gamma_f, idx_map, qef_reg_scale, voxelgrid_colors):
|
221 |
+
"""
|
222 |
+
Computes the location of dual vertices as described in Section 4.2
|
223 |
+
"""
|
224 |
+
alpha_nx12x2 = torch.index_select(input=alpha, index=self.cube_edges, dim=1).reshape(-1, 12, 2)
|
225 |
+
surf_edges_x = torch.index_select(input=voxelgrid_vertices, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3)
|
226 |
+
surf_edges_s = torch.index_select(input=scalar_field, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1)
|
227 |
+
zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x)
|
228 |
+
|
229 |
+
if voxelgrid_colors is not None:
|
230 |
+
C = voxelgrid_colors.shape[-1]
|
231 |
+
surf_edges_c = torch.index_select(input=voxelgrid_colors, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, C)
|
232 |
+
|
233 |
+
idx_map = idx_map.reshape(-1, 12)
|
234 |
+
num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0)
|
235 |
+
edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], []
|
236 |
+
|
237 |
+
# if color is not None:
|
238 |
+
# vd_color = []
|
239 |
+
|
240 |
+
total_num_vd = 0
|
241 |
+
vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False)
|
242 |
+
|
243 |
+
for num in torch.unique(num_vd):
|
244 |
+
cur_cubes = (num_vd == num) # consider cubes with the same numbers of vd emitted (for batching)
|
245 |
+
curr_num_vd = cur_cubes.sum() * num
|
246 |
+
curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7)
|
247 |
+
curr_edge_group_to_vd = torch.arange(
|
248 |
+
curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd
|
249 |
+
total_num_vd += curr_num_vd
|
250 |
+
curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[
|
251 |
+
cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group)
|
252 |
+
|
253 |
+
curr_mask = (curr_edge_group != -1)
|
254 |
+
edge_group.append(torch.masked_select(curr_edge_group, curr_mask))
|
255 |
+
edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask))
|
256 |
+
edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask))
|
257 |
+
vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True))
|
258 |
+
vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1))
|
259 |
+
# if color is not None:
|
260 |
+
# vd_color.append(color[cur_cubes].unsqueeze(1).repeat(1, num, 1).reshape(-1, 3))
|
261 |
+
|
262 |
+
edge_group = torch.cat(edge_group)
|
263 |
+
edge_group_to_vd = torch.cat(edge_group_to_vd)
|
264 |
+
edge_group_to_cube = torch.cat(edge_group_to_cube)
|
265 |
+
vd_num_edges = torch.cat(vd_num_edges)
|
266 |
+
vd_gamma = torch.cat(vd_gamma)
|
267 |
+
# if color is not None:
|
268 |
+
# vd_color = torch.cat(vd_color)
|
269 |
+
# else:
|
270 |
+
# vd_color = None
|
271 |
+
|
272 |
+
vd = torch.zeros((total_num_vd, 3), device=self.device)
|
273 |
+
beta_sum = torch.zeros((total_num_vd, 1), device=self.device)
|
274 |
+
|
275 |
+
idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group)
|
276 |
+
|
277 |
+
x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3)
|
278 |
+
s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1)
|
279 |
+
|
280 |
+
|
281 |
+
zero_crossing_group = torch.index_select(
|
282 |
+
input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3)
|
283 |
+
|
284 |
+
alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0,
|
285 |
+
index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1)
|
286 |
+
ue_group = self._linear_interp(s_group * alpha_group, x_group)
|
287 |
+
|
288 |
+
beta_group = torch.gather(input=beta.reshape(-1), dim=0,
|
289 |
+
index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1)
|
290 |
+
beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group)
|
291 |
+
vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum
|
292 |
+
|
293 |
+
'''
|
294 |
+
interpolate colors use the same method as dual vertices
|
295 |
+
'''
|
296 |
+
if voxelgrid_colors is not None:
|
297 |
+
vd_color = torch.zeros((total_num_vd, C), device=self.device)
|
298 |
+
c_group = torch.index_select(input=surf_edges_c, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, C)
|
299 |
+
uc_group = self._linear_interp(s_group * alpha_group, c_group)
|
300 |
+
vd_color = vd_color.index_add_(0, index=edge_group_to_vd, source=uc_group * beta_group) / beta_sum
|
301 |
+
else:
|
302 |
+
vd_color = None
|
303 |
+
|
304 |
+
L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges)
|
305 |
+
|
306 |
+
v_idx = torch.arange(vd.shape[0], device=self.device) # + total_num_vd
|
307 |
+
|
308 |
+
vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube *
|
309 |
+
12 + edge_group, src=v_idx[edge_group_to_vd])
|
310 |
+
|
311 |
+
return vd, L_dev, vd_gamma, vd_idx_map, vd_color
|
312 |
+
|
313 |
+
def _triangulate(self, scalar_field, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, vd_color):
|
314 |
+
"""
|
315 |
+
Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into
|
316 |
+
triangles based on the gamma parameter, as described in Section 4.3.
|
317 |
+
"""
|
318 |
+
with torch.no_grad():
|
319 |
+
group_mask = (edge_counts == 4) & surf_edges_mask # surface edges shared by 4 cubes.
|
320 |
+
group = idx_map.reshape(-1)[group_mask]
|
321 |
+
vd_idx = vd_idx_map[group_mask]
|
322 |
+
edge_indices, indices = torch.sort(group, stable=True)
|
323 |
+
quad_vd_idx = vd_idx[indices].reshape(-1, 4)
|
324 |
+
|
325 |
+
# Ensure all face directions point towards the positive SDF to maintain consistent winding.
|
326 |
+
s_edges = scalar_field[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2)
|
327 |
+
flip_mask = s_edges[:, 0] > 0
|
328 |
+
quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]],
|
329 |
+
quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]]))
|
330 |
+
|
331 |
+
quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4)
|
332 |
+
gamma_02 = quad_gamma[:, 0] * quad_gamma[:, 2]
|
333 |
+
gamma_13 = quad_gamma[:, 1] * quad_gamma[:, 3]
|
334 |
+
if not training:
|
335 |
+
mask = (gamma_02 > gamma_13)
|
336 |
+
faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device)
|
337 |
+
faces[mask] = quad_vd_idx[mask][:, self.quad_split_1]
|
338 |
+
faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2]
|
339 |
+
faces = faces.reshape(-1, 3)
|
340 |
+
else:
|
341 |
+
vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
|
342 |
+
vd_02 = (vd_quad[:, 0] + vd_quad[:, 2]) / 2
|
343 |
+
vd_13 = (vd_quad[:, 1] + vd_quad[:, 3]) / 2
|
344 |
+
weight_sum = (gamma_02 + gamma_13) + 1e-8
|
345 |
+
vd_center = (vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) / weight_sum.unsqueeze(-1)
|
346 |
+
|
347 |
+
if vd_color is not None:
|
348 |
+
color_quad = torch.index_select(input=vd_color, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, vd_color.shape[-1])
|
349 |
+
color_02 = (color_quad[:, 0] + color_quad[:, 2]) / 2
|
350 |
+
color_13 = (color_quad[:, 1] + color_quad[:, 3]) / 2
|
351 |
+
color_center = (color_02 * gamma_02.unsqueeze(-1) + color_13 * gamma_13.unsqueeze(-1)) / weight_sum.unsqueeze(-1)
|
352 |
+
vd_color = torch.cat([vd_color, color_center])
|
353 |
+
|
354 |
+
|
355 |
+
vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0]
|
356 |
+
vd = torch.cat([vd, vd_center])
|
357 |
+
faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2)
|
358 |
+
faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3)
|
359 |
+
return vd, faces, s_edges, edge_indices, vd_color
|