Spaces:
Running
on
Zero
Running
on
Zero
Delete app1.py
Browse files
app1.py
DELETED
@@ -1,264 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import spaces
|
3 |
-
from gradio_litmodel3d import LitModel3D
|
4 |
-
|
5 |
-
import os
|
6 |
-
os.environ['SPCONV_ALGO'] = 'native'
|
7 |
-
from typing import *
|
8 |
-
import torch
|
9 |
-
import numpy as np
|
10 |
-
import imageio
|
11 |
-
import uuid
|
12 |
-
from easydict import EasyDict as edict
|
13 |
-
from PIL import Image
|
14 |
-
from trellis.pipelines import TrellisImageTo3DPipeline
|
15 |
-
from trellis.representations import Gaussian, MeshExtractResult
|
16 |
-
from trellis.utils import render_utils, postprocessing_utils
|
17 |
-
|
18 |
-
import logging
|
19 |
-
|
20 |
-
# Configure logging
|
21 |
-
logging.basicConfig(
|
22 |
-
level=logging.INFO,
|
23 |
-
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
24 |
-
handlers=[
|
25 |
-
logging.StreamHandler()
|
26 |
-
]
|
27 |
-
)
|
28 |
-
logger = logging.getLogger(__name__)
|
29 |
-
|
30 |
-
# Log environment variables
|
31 |
-
logger.info(f"ATTN_BACKEND: {os.environ.get('ATTN_BACKEND')}")
|
32 |
-
logger.info(f"ATTN_DEBUG: {os.environ.get('ATTN_DEBUG')}")
|
33 |
-
logger.info(f"SPARSE_BACKEND: {os.environ.get('SPARSE_BACKEND')}")
|
34 |
-
logger.info(f"SPARSE_DEBUG: {os.environ.get('SPARSE_DEBUG')}")
|
35 |
-
logger.info(f"SPARSE_ATTN_BACKEND: {os.environ.get('SPARSE_ATTN_BACKEND')}")
|
36 |
-
|
37 |
-
MAX_SEED = np.iinfo(np.int32).max
|
38 |
-
TMP_DIR = "/tmp/Trellis-demo"
|
39 |
-
|
40 |
-
os.makedirs(TMP_DIR, exist_ok=True)
|
41 |
-
|
42 |
-
|
43 |
-
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
44 |
-
"""
|
45 |
-
Preprocess the input image.
|
46 |
-
Args:
|
47 |
-
image (Image.Image): The input image.
|
48 |
-
Returns:
|
49 |
-
str: uuid of the trial.
|
50 |
-
Image.Image: The preprocessed image.
|
51 |
-
"""
|
52 |
-
trial_id = str(uuid.uuid4())
|
53 |
-
processed_image = pipeline.preprocess_image(image)
|
54 |
-
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
|
55 |
-
return trial_id, processed_image
|
56 |
-
|
57 |
-
|
58 |
-
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
59 |
-
return {
|
60 |
-
'gaussian': {
|
61 |
-
**gs.init_params,
|
62 |
-
'_xyz': gs._xyz.cpu().numpy(),
|
63 |
-
'_features_dc': gs._features_dc.cpu().numpy(),
|
64 |
-
'_scaling': gs._scaling.cpu().numpy(),
|
65 |
-
'_rotation': gs._rotation.cpu().numpy(),
|
66 |
-
'_opacity': gs._opacity.cpu().numpy(),
|
67 |
-
},
|
68 |
-
'mesh': {
|
69 |
-
'vertices': mesh.vertices.cpu().numpy(),
|
70 |
-
'faces': mesh.faces.cpu().numpy(),
|
71 |
-
},
|
72 |
-
'trial_id': trial_id,
|
73 |
-
}
|
74 |
-
|
75 |
-
|
76 |
-
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
77 |
-
gs = Gaussian(
|
78 |
-
aabb=state['gaussian']['aabb'],
|
79 |
-
sh_degree=state['gaussian']['sh_degree'],
|
80 |
-
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
81 |
-
scaling_bias=state['gaussian']['scaling_bias'],
|
82 |
-
opacity_bias=state['gaussian']['opacity_bias'],
|
83 |
-
scaling_activation=state['gaussian']['scaling_activation'],
|
84 |
-
)
|
85 |
-
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
86 |
-
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
87 |
-
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
88 |
-
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
89 |
-
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
90 |
-
|
91 |
-
mesh = edict(
|
92 |
-
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
93 |
-
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
94 |
-
)
|
95 |
-
|
96 |
-
return gs, mesh, state['trial_id']
|
97 |
-
|
98 |
-
|
99 |
-
@spaces.GPU
|
100 |
-
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
|
101 |
-
"""
|
102 |
-
Convert an image to a 3D model.
|
103 |
-
Args:
|
104 |
-
trial_id (str): The uuid of the trial.
|
105 |
-
seed (int): The random seed.
|
106 |
-
randomize_seed (bool): Whether to randomize the seed.
|
107 |
-
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
108 |
-
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
109 |
-
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
110 |
-
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
111 |
-
Returns:
|
112 |
-
dict: The information of the generated 3D model.
|
113 |
-
str: The path to the video of the 3D model.
|
114 |
-
"""
|
115 |
-
if randomize_seed:
|
116 |
-
seed = np.random.randint(0, MAX_SEED)
|
117 |
-
outputs = pipeline.run(
|
118 |
-
Image.open(f"{TMP_DIR}/{trial_id}.png"),
|
119 |
-
seed=seed,
|
120 |
-
formats=["gaussian", "mesh"],
|
121 |
-
preprocess_image=False,
|
122 |
-
sparse_structure_sampler_params={
|
123 |
-
"steps": ss_sampling_steps,
|
124 |
-
"cfg_strength": ss_guidance_strength,
|
125 |
-
},
|
126 |
-
slat_sampler_params={
|
127 |
-
"steps": slat_sampling_steps,
|
128 |
-
"cfg_strength": slat_guidance_strength,
|
129 |
-
},
|
130 |
-
)
|
131 |
-
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
132 |
-
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
133 |
-
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
134 |
-
trial_id = uuid.uuid4()
|
135 |
-
video_path = f"{TMP_DIR}/{trial_id}.mp4"
|
136 |
-
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
137 |
-
imageio.mimsave(video_path, video, fps=15)
|
138 |
-
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
|
139 |
-
return state, video_path
|
140 |
-
|
141 |
-
|
142 |
-
@spaces.GPU
|
143 |
-
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
|
144 |
-
"""
|
145 |
-
Extract a GLB file from the 3D model.
|
146 |
-
Args:
|
147 |
-
state (dict): The state of the generated 3D model.
|
148 |
-
mesh_simplify (float): The mesh simplification factor.
|
149 |
-
texture_size (int): The texture resolution.
|
150 |
-
Returns:
|
151 |
-
str: The path to the extracted GLB file.
|
152 |
-
"""
|
153 |
-
gs, mesh, trial_id = unpack_state(state)
|
154 |
-
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
155 |
-
glb_path = f"{TMP_DIR}/{trial_id}.glb"
|
156 |
-
glb.export(glb_path)
|
157 |
-
return glb_path, glb_path
|
158 |
-
|
159 |
-
|
160 |
-
def activate_button() -> gr.Button:
|
161 |
-
return gr.Button(interactive=True)
|
162 |
-
|
163 |
-
|
164 |
-
def deactivate_button() -> gr.Button:
|
165 |
-
return gr.Button(interactive=False)
|
166 |
-
|
167 |
-
|
168 |
-
with gr.Blocks() as demo:
|
169 |
-
gr.Markdown("""
|
170 |
-
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
171 |
-
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
172 |
-
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
173 |
-
""")
|
174 |
-
|
175 |
-
with gr.Row():
|
176 |
-
with gr.Column():
|
177 |
-
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
|
178 |
-
|
179 |
-
with gr.Accordion(label="Generation Settings", open=False):
|
180 |
-
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
181 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
182 |
-
gr.Markdown("Stage 1: Sparse Structure Generation")
|
183 |
-
with gr.Row():
|
184 |
-
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
185 |
-
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
186 |
-
gr.Markdown("Stage 2: Structured Latent Generation")
|
187 |
-
with gr.Row():
|
188 |
-
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
189 |
-
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
190 |
-
|
191 |
-
generate_btn = gr.Button("Generate")
|
192 |
-
|
193 |
-
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
194 |
-
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
195 |
-
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
196 |
-
|
197 |
-
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
198 |
-
|
199 |
-
with gr.Column():
|
200 |
-
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
201 |
-
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
|
202 |
-
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
203 |
-
|
204 |
-
trial_id = gr.Textbox(visible=False)
|
205 |
-
output_buf = gr.State()
|
206 |
-
|
207 |
-
# Example images at the bottom of the page
|
208 |
-
|
209 |
-
# Handlers
|
210 |
-
image_prompt.upload(
|
211 |
-
preprocess_image,
|
212 |
-
inputs=[image_prompt],
|
213 |
-
outputs=[trial_id, image_prompt],
|
214 |
-
)
|
215 |
-
image_prompt.clear(
|
216 |
-
lambda: '',
|
217 |
-
outputs=[trial_id],
|
218 |
-
)
|
219 |
-
|
220 |
-
generate_btn.click(
|
221 |
-
image_to_3d,
|
222 |
-
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
223 |
-
outputs=[output_buf, video_output],
|
224 |
-
).then(
|
225 |
-
activate_button,
|
226 |
-
outputs=[extract_glb_btn],
|
227 |
-
)
|
228 |
-
|
229 |
-
video_output.clear(
|
230 |
-
deactivate_button,
|
231 |
-
outputs=[extract_glb_btn],
|
232 |
-
)
|
233 |
-
|
234 |
-
extract_glb_btn.click(
|
235 |
-
extract_glb,
|
236 |
-
inputs=[output_buf, mesh_simplify, texture_size],
|
237 |
-
outputs=[model_output, download_glb],
|
238 |
-
).then(
|
239 |
-
activate_button,
|
240 |
-
outputs=[download_glb],
|
241 |
-
)
|
242 |
-
|
243 |
-
model_output.clear(
|
244 |
-
deactivate_button,
|
245 |
-
outputs=[download_glb],
|
246 |
-
)
|
247 |
-
|
248 |
-
|
249 |
-
# Launch the Gradio app
|
250 |
-
if __name__ == "__main__":
|
251 |
-
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
252 |
-
if torch.cuda.is_available():
|
253 |
-
pipeline.cuda()
|
254 |
-
print("CUDA is available. Using GPU.")
|
255 |
-
else:
|
256 |
-
print("CUDA not available. Falling back to CPU.")
|
257 |
-
try:
|
258 |
-
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
259 |
-
except:
|
260 |
-
pass
|
261 |
-
print(f"CUDA Available: {torch.cuda.is_available()}")
|
262 |
-
print(f"CUDA Version: {torch.version.cuda}")
|
263 |
-
print(f"Number of GPUs: {torch.cuda.device_count()}")
|
264 |
-
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|