Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,8 @@ import os
|
|
2 |
import torch
|
3 |
from threading import Thread
|
4 |
import gradio as gr
|
5 |
-
from transformers import
|
|
|
6 |
|
7 |
# 3D mesh dependencies
|
8 |
import trimesh
|
@@ -13,20 +14,63 @@ import tempfile
|
|
13 |
# --------- Configuration & Model Loading ---------
|
14 |
MODEL_DIR = "Qwen/Qwen2-VL-7B-Instruct"
|
15 |
# Load processor, tokenizer, model for Qwen2.5-VL
|
16 |
-
|
17 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, trust_remote_code=True)
|
18 |
-
model = AutoModelForCausalLM.from_pretrained(
|
19 |
MODEL_DIR,
|
20 |
torch_dtype=torch.float16,
|
21 |
device_map="auto",
|
22 |
trust_remote_code=True
|
23 |
)
|
24 |
-
|
25 |
-
# Terminator tokens
|
26 |
-
terminators = [tokenizer.eos_token_id]
|
27 |
|
28 |
# --------- Chat Inference Function ---------
|
29 |
-
def chat_qwen_vl(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"""
|
31 |
Stream chat response from local Qwen2.5-VL model.
|
32 |
"""
|
|
|
2 |
import torch
|
3 |
from threading import Thread
|
4 |
import gradio as gr
|
5 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
6 |
+
from qwen_vl_utils import process_vision_info
|
7 |
|
8 |
# 3D mesh dependencies
|
9 |
import trimesh
|
|
|
14 |
# --------- Configuration & Model Loading ---------
|
15 |
MODEL_DIR = "Qwen/Qwen2-VL-7B-Instruct"
|
16 |
# Load processor, tokenizer, model for Qwen2.5-VL
|
17 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
|
|
|
18 |
MODEL_DIR,
|
19 |
torch_dtype=torch.float16,
|
20 |
device_map="auto",
|
21 |
trust_remote_code=True
|
22 |
)
|
23 |
+
processor = AutoProcessor.from_pretrained(MODEL_DIR)
|
|
|
|
|
24 |
|
25 |
# --------- Chat Inference Function ---------
|
26 |
+
def chat_qwen_vl(messages):
|
27 |
+
# —— 原有多模态输入构造 —— #
|
28 |
+
text = processor.apply_chat_template(
|
29 |
+
messages, tokenize=False, add_generation_prompt=True
|
30 |
+
)
|
31 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
32 |
+
inputs = processor(
|
33 |
+
text=[text],
|
34 |
+
images=image_inputs,
|
35 |
+
videos=video_inputs,
|
36 |
+
padding=True,
|
37 |
+
return_tensors="pt"
|
38 |
+
).to(model.device)
|
39 |
+
|
40 |
+
# —— 流式生成部分 —— #
|
41 |
+
# 1. 构造 streamer,用 processor.tokenizer(AutoProcessor 内部自带 tokenizer)
|
42 |
+
streamer = TextIteratorStreamer(
|
43 |
+
processor.tokenizer,
|
44 |
+
timeout=10.0,
|
45 |
+
skip_prompt=True,
|
46 |
+
skip_special_tokens=True
|
47 |
+
)
|
48 |
+
|
49 |
+
# 2. 把 streamer 和生成参数一起传给 model.generate
|
50 |
+
gen_kwargs = dict(
|
51 |
+
**inputs, # 包含 input_ids, pixel_values, attention_mask 等
|
52 |
+
streamer=streamer, # 关键:挂载 streamer
|
53 |
+
top_k=1024,
|
54 |
+
max_new_tokens=1280,
|
55 |
+
temperature=0.1,
|
56 |
+
top_p=0.1,
|
57 |
+
eos_token_id=terminators, # 你的结束符 ID 列表
|
58 |
+
)
|
59 |
+
# 如果需要零温度贪心,则关闭采样
|
60 |
+
if gen_kwargs["temperature"] == 0:
|
61 |
+
gen_kwargs["do_sample"] = False
|
62 |
+
|
63 |
+
# 3. 在后台线程中启动生成
|
64 |
+
Thread(target=model.generate, kwargs=gen_kwargs).start()
|
65 |
+
|
66 |
+
# 4. 在主线程中实时读取并 yield
|
67 |
+
buffer = []
|
68 |
+
for chunk in streamer:
|
69 |
+
buffer.append(chunk)
|
70 |
+
# 每次拿到新片段就拼接并输出
|
71 |
+
yield "".join(buffer)
|
72 |
+
|
73 |
+
def chat_qwen_vl_(message: str, history: list, temperature: float = 0.7, max_new_tokens: int = 1024):
|
74 |
"""
|
75 |
Stream chat response from local Qwen2.5-VL model.
|
76 |
"""
|