Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,319 Bytes
6073e55 23fdbc0 ba0b022 23fdbc0 ba0b022 23fdbc0 ba0b022 23fdbc0 ba0b022 23fdbc0 ba0b022 3a35241 ba0b022 3a35241 23fdbc0 ba0b022 23fdbc0 d1f6572 ba0b022 23fdbc0 ba0b022 23fdbc0 6e4dd99 23fdbc0 6e4dd99 3ac37c1 6e4dd99 022c16f 3ac37c1 ba0b022 23fdbc0 b5c1599 23fdbc0 04bc199 23fdbc0 04bc199 929ef96 23fdbc0 882e9a6 23fdbc0 882e9a6 23fdbc0 882e9a6 23fdbc0 882e9a6 23fdbc0 882e9a6 23fdbc0 04bc199 23fdbc0 882e9a6 23fdbc0 882e9a6 23fdbc0 882e9a6 23fdbc0 882e9a6 23fdbc0 3ac37c1 23fdbc0 3ac37c1 23fdbc0 04bc199 23fdbc0 04bc199 23fdbc0 882e9a6 23fdbc0 882e9a6 23fdbc0 882e9a6 23fdbc0 882e9a6 23fdbc0 882e9a6 23fdbc0 882e9a6 23fdbc0 ba0b022 23fdbc0 f3b9e64 d1f6572 ba0b022 23fdbc0 d1f6572 f3b9e64 ba0b022 23fdbc0 e462b88 23fdbc0 3ac37c1 1babe45 3ac37c1 23fdbc0 1babe45 23fdbc0 f3b9e64 23fdbc0 6e4dd99 23fdbc0 3ac37c1 23fdbc0 3ac37c1 23fdbc0 f3b9e64 97a0a7e 23fdbc0 ba0b022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause license.
import html
import json
import os
import random
import time
import gradio as gr
import nncore
import spaces
import torch
from huggingface_hub import snapshot_download
from videomind.constants import GROUNDER_PROMPT, PLANNER_PROMPT, VERIFIER_PROMPT
from videomind.dataset.utils import process_vision_info
from videomind.model.builder import build_model
from videomind.utils.io import get_duration
from videomind.utils.parser import parse_query, parse_span
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
PATH = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
BASE_MODEL = 'model_zoo/Qwen2-VL-2B-Instruct'
BASE_MODEL_REPO = 'Qwen/Qwen2-VL-2B-Instruct'
MODEL = 'model_zoo/VideoMind-2B'
MODEL_REPO = 'yeliudev/VideoMind-2B'
TITLE = 'VideoMind: A Chain-of-LoRA Agent for Long Video Reasoning'
BADGE = """
<h3 align="center" style="margin-top: -0.5em;">A Chain-of-LoRA Agent for Long Video Reasoning</h3>
<div style="display: flex; justify-content: center; gap: 5px; margin-bottom: -0.7em !important;">
<a href="https://arxiv.org/abs/2503.13444" target="_blank"><img src="https://img.shields.io/badge/arXiv-2503.13444-red"></a>
<a href="https://videomind.github.io/" target="_blank"><img src="https://img.shields.io/badge/Project-Page-brightgreen"></a>
<a href="https://huggingface.co/collections/yeliudev/videomind-67dd41f42c57f0e7433afb36" target="_blank"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue"></a>
<a href="https://huggingface.co/datasets/yeliudev/VideoMind-Dataset" target="_blank"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Dataset-orange"></a>
<a href="https://github.com/yeliudev/VideoMind/blob/main/README.md" target="_blank"><img src="https://img.shields.io/badge/License-BSD--3--Clause-purple"></a>
<a href="https://github.com/yeliudev/VideoMind" target="_blank"><img src="https://img.shields.io/github/stars/yeliudev/VideoMind"></a>
</div>
"""
LOGO = '<p align="center"><img width="350" src="https://raw.githubusercontent.com/yeliudev/VideoMind/refs/heads/main/.github/logo.png"></p>'
DISC = 'VideoMind is a multi-modal agent framework that enhances video reasoning by emulating *human-like* processes, such as *breaking down tasks*, *localizing and verifying moments*, and *synthesizing answers*. This demo showcases how VideoMind-2B handles video-language tasks. Please open an <a href="https://github.com/yeliudev/VideoMind/issues/new" target="_blank">issue</a> if you meet any problems.' # noqa
# yapf:disable
EXAMPLES = [
[f'{PATH}/examples/4167294363.mp4', 'Why did the old man stand up?', ['pla', 'gnd', 'ver', 'ans']],
[f'{PATH}/examples/5012237466.mp4', 'How does the child in stripes react about the fountain?', ['pla', 'gnd', 'ver', 'ans']],
[f'{PATH}/examples/13887487955.mp4', 'What did the excavator do after it pushed the cement forward?', ['pla', 'gnd', 'ver', 'ans']],
[f'{PATH}/examples/5188348585.mp4', 'What did the person do before pouring the liquor?', ['pla', 'gnd', 'ver', 'ans']],
[f'{PATH}/examples/4766274786.mp4', 'What did the girl do after the baby lost the balloon?', ['pla', 'gnd', 'ver', 'ans']],
[f'{PATH}/examples/4742652230.mp4', 'Why is the girl pushing the boy only around the toy but not to other places?', ['pla', 'gnd', 'ver', 'ans']],
[f'{PATH}/examples/9383140374.mp4', 'How does the girl in pink control the movement of the claw?', ['pla', 'gnd', 'ver', 'ans']],
[f'{PATH}/examples/10309844035.mp4', 'Why are they holding up the phones?', ['pla', 'gnd', 'ver', 'ans']],
[f'{PATH}/examples/pA6Z-qYhSNg_60.0_210.0.mp4', 'Different types of meat products are being cut, shaped and prepared', ['gnd', 'ver']],
[f'{PATH}/examples/UFWQKrcbhjI_360.0_510.0.mp4', 'A man talks to the camera whilst walking along a roadside in a rural area', ['gnd', 'ver']],
[f'{PATH}/examples/RoripwjYFp8_210.0_360.0.mp4', 'A woman wearing glasses eating something at a street market', ['gnd', 'ver']],
[f'{PATH}/examples/h6QKDqomIPk_210.0_360.0.mp4', 'A toddler sits in his car seat, holding his yellow tablet', ['gnd', 'ver']],
[f'{PATH}/examples/Z3-IZ3HAmIA_60.0_210.0.mp4', 'A view from the window as the plane accelerates and takes off from the runway', ['gnd', 'ver']],
[f'{PATH}/examples/yId2wIocTys_210.0_360.0.mp4', "Temporally locate the visual content mentioned in the text query 'kids exercise in front of parked cars' within the video.", ['pla', 'gnd', 'ver']],
[f'{PATH}/examples/rrTIeJRVGjg_60.0_210.0.mp4', "Localize the moment that provides relevant context about 'man stands in front of a white building monologuing'.", ['pla', 'gnd', 'ver']],
[f'{PATH}/examples/DTInxNfWXVc_210.0_360.0.mp4', "Find the video segment that corresponds to the given textual query 'man with headphones talking'.", ['pla', 'gnd', 'ver']],
]
# yapf:enable
# https://github.com/gradio-app/gradio/pull/10552
JS = """
function init() {
if (window.innerWidth >= 1536) {
document.querySelector('main').style.maxWidth = '1536px'
}
}
"""
if not nncore.is_dir(BASE_MODEL):
snapshot_download(BASE_MODEL_REPO, local_dir=BASE_MODEL)
if not nncore.is_dir(MODEL):
snapshot_download(MODEL_REPO, local_dir=MODEL)
print('Initializing role *grounder*')
model, processor = build_model(MODEL)
print('Initializing role *planner*')
model.load_adapter(nncore.join(MODEL, 'planner'), adapter_name='planner')
print('Initializing role *verifier*')
model.load_adapter(nncore.join(MODEL, 'verifier'), adapter_name='verifier')
device = torch.device('cuda')
def seconds_to_hms(seconds):
hours, remainder = divmod(round(seconds), 3600)
minutes, seconds = divmod(remainder, 60)
return f'{hours:02}:{minutes:02}:{seconds:02}'
def random_sample():
return random.choice(EXAMPLES)
def enable_btns():
return (gr.Button(interactive=True), ) * 3
def disable_btns():
return (gr.Button(interactive=False), ) * 3
def update_placeholder(role):
placeholder = 'Ask a question about the video...' if 'ans' in role else 'Write a query to search for a moment...'
return gr.Textbox(placeholder=placeholder)
def reset_components():
return ['pla', 'gnd', 'ver', 'ans'], 5, 0, 256
@spaces.GPU
def main(video, prompt, role, max_candidates, temperature, max_new_tokens):
global model, processor, device
history = []
if not video:
gr.Warning('Please upload a video or click [Random] to sample one.')
return history
if not prompt:
gr.Warning('Please provide a prompt or click [Random] to sample one.')
return history
if 'gnd' not in role and 'ans' not in role:
gr.Warning('Please at least select Grounder or Answerer.')
return history
if 'ver' in role and 'gnd' not in role:
gr.Warning('Verifier cannot be used without Grounder.')
return history
if 'pla' in role and 'gnd' not in role and 'ver' not in role:
gr.Warning('Planner can only be used with Grounder and Verifier.')
return history
history.append({'role': 'user', 'content': prompt})
yield history
model = model.to(device)
duration = get_duration(video)
# do grounding and answering by default
do_grounding = True
do_answering = True
# initialize grounding query as prompt
query = prompt
if 'pla' in role:
text = PLANNER_PROMPT.format(prompt)
history.append({
'metadata': {
'title': '๐บ๏ธ Working as Planner...'
},
'role': 'assistant',
'content': f'##### Planner Prompt:\n\n{html.escape(text)}\n\n##### Planner Response:\n\n...'
})
yield history
start_time = time.perf_counter()
messages = [{
'role':
'user',
'content': [{
'type': 'video',
'video': video,
'num_threads': 1,
'min_pixels': 36 * 28 * 28,
'max_pixels': 64 * 28 * 28,
'max_frames': 100,
'fps': 1.0
}, {
'type': 'text',
'text': text
}]
}]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
images, videos = process_vision_info(messages)
data = processor(text=[text], images=images, videos=videos, return_tensors='pt')
data = data.to(device)
model.base_model.disable_adapter_layers()
model.base_model.enable_adapter_layers()
model.set_adapter('planner')
output_ids = model.generate(
**data,
do_sample=temperature > 0,
temperature=temperature if temperature > 0 else None,
top_p=None,
top_k=None,
repetition_penalty=None,
max_new_tokens=max_new_tokens)
assert data.input_ids.size(0) == output_ids.size(0) == 1
output_ids = output_ids[0, data.input_ids.size(1):]
if output_ids[-1] == processor.tokenizer.eos_token_id:
output_ids = output_ids[:-1]
response = processor.decode(output_ids, clean_up_tokenization_spaces=False)
for i, text in enumerate(response.split(' ')):
if i == 0:
history[-1]['content'] = history[-1]['content'].rstrip('.')
history[-1]['content'] += text
else:
history[-1]['content'] += ' ' + text
yield history
elapsed_time = round(time.perf_counter() - start_time, 1)
history[-1]['metadata']['title'] += f' ({elapsed_time} seconds)'
yield history
try:
parsed = json.loads(response)
action = parsed[0] if isinstance(parsed, list) else parsed
if action['type'].lower() == 'grounder' and action['value']:
query = action['value']
elif action['type'].lower() == 'answerer':
do_grounding = False
do_answering = True
except Exception:
pass
response = 'After browsing the video and the question. My plan to figure out the answer is as follows:\n'
step_idx = 1
if 'gnd' in role and do_grounding:
response += f'\n{step_idx}. Localize the relevant moment in this video using the query "<span style="color:red">{query}</span>".'
step_idx += 1
if 'ver' in role and do_grounding:
response += f'\n{step_idx}. Verify the grounded moments one-by-one and select the best cancdidate.'
step_idx += 1
if 'ans' in role and do_answering:
if step_idx > 1:
response += f'\n{step_idx}. Crop the video segment and zoom-in to higher resolution.'
else:
response += f'\n{step_idx}. Analyze the whole video directly without cropping.'
history.append({'role': 'assistant', 'content': ''})
for i, text in enumerate(response.split(' ')):
history[-1]['content'] += ' ' + text if i > 0 else text
yield history
if 'gnd' in role and do_grounding:
query = parse_query(query)
text = GROUNDER_PROMPT.format(query)
history.append({
'metadata': {
'title': '๐ Working as Grounder...'
},
'role': 'assistant',
'content': f'##### Grounder Prompt:\n\n{html.escape(text)}\n\n##### Grounder Response:\n\n...'
})
yield history
start_time = time.perf_counter()
messages = [{
'role':
'user',
'content': [{
'type': 'video',
'video': video,
'num_threads': 1,
'min_pixels': 36 * 28 * 28,
'max_pixels': 64 * 28 * 28,
'max_frames': 150,
'fps': 1.0
}, {
'type': 'text',
'text': text
}]
}]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
images, videos = process_vision_info(messages)
data = processor(text=[text], images=images, videos=videos, return_tensors='pt')
data = data.to(device)
model.base_model.disable_adapter_layers()
model.base_model.enable_adapter_layers()
model.set_adapter('grounder')
output_ids = model.generate(
**data,
do_sample=temperature > 0,
temperature=temperature if temperature > 0 else None,
top_p=None,
top_k=None,
repetition_penalty=None,
max_new_tokens=max_new_tokens)
assert data.input_ids.size(0) == output_ids.size(0) == 1
output_ids = output_ids[0, data.input_ids.size(1):]
if output_ids[-1] == processor.tokenizer.eos_token_id:
output_ids = output_ids[:-1]
response = processor.decode(output_ids, clean_up_tokenization_spaces=False)
for i, text in enumerate(response.split(' ')):
if i == 0:
history[-1]['content'] = history[-1]['content'].rstrip('.')
history[-1]['content'] += text
else:
history[-1]['content'] += ' ' + text
yield history
elapsed_time = round(time.perf_counter() - start_time, 1)
history[-1]['metadata']['title'] += f' ({elapsed_time} seconds)'
yield history
if len(model.reg) > 0:
# 1. extract timestamps and confidences
blob = model.reg[0].cpu().float()
pred, conf = blob[:, :2] * duration, blob[:, -1].tolist()
# 2. clamp timestamps
pred = pred.clamp(min=0, max=duration)
# 3. sort timestamps
inds = (pred[:, 1] - pred[:, 0] < 0).nonzero()[:, 0]
pred[inds] = pred[inds].roll(1)
# 4. convert timestamps to list
pred = pred.tolist()
else:
if 'ver' in role:
pred = [[i * duration / 6, (i + 2) * duration / 6] for i in range(5)]
conf = [0] * 5
else:
pred = [[0, duration]]
conf = [0]
response = 'The candidate moments and confidence scores are as follows:\n'
response += '\n| ID | Start Time | End Time | Confidence |'
response += '\n| :-: | :-: | :-: | :-: |'
for i, (p, c) in enumerate(zip(pred[:max_candidates], conf[:max_candidates])):
response += f'\n| {i} | {seconds_to_hms(p[0])} | {seconds_to_hms(p[1])} | {c:.2f} |'
response += f'\n\nTherefore, the target moment might happens from <span style="color:red">{seconds_to_hms(pred[0][0])}</span> to <span style="color:red">{seconds_to_hms(pred[0][1])}</span>.'
history.append({'role': 'assistant', 'content': ''})
for i, text in enumerate(response.split(' ')):
history[-1]['content'] += ' ' + text if i > 0 else text
yield history
if 'ver' in role and do_grounding:
text = VERIFIER_PROMPT.format(query)
history.append({
'metadata': {
'title': '๐ Working as Verifier...'
},
'role': 'assistant',
'content': f'##### Verifier Prompt:\n\n{html.escape(text)}\n\n##### Verifier Response:\n\n...'
})
yield history
start_time = time.perf_counter()
prob = []
for i, cand in enumerate(pred[:max_candidates]):
s0, e0 = parse_span(cand, duration, 2)
offset = (e0 - s0) / 2
s1, e1 = parse_span([s0 - offset, e0 + offset], duration)
# percentage of s0, e0 within s1, e1
s = (s0 - s1) / (e1 - s1)
e = (e0 - s1) / (e1 - s1)
messages = [{
'role':
'user',
'content': [{
'type': 'video',
'video': video,
'num_threads': 1,
'video_start': s1,
'video_end': e1,
'min_pixels': 36 * 28 * 28,
'max_pixels': 64 * 28 * 28,
'max_frames': 64,
'fps': 2.0
}, {
'type': 'text',
'text': text
}]
}]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
images, videos = process_vision_info(messages)
data = processor(text=[text], images=images, videos=videos, return_tensors='pt')
# ===== insert segment start/end tokens =====
video_grid_thw = data['video_grid_thw'][0]
num_frames, window = int(video_grid_thw[0]), int(video_grid_thw[1] * video_grid_thw[2] / 4)
assert num_frames * window * 4 == data['pixel_values_videos'].size(0)
pos_s, pos_e = round(s * num_frames), round(e * num_frames)
pos_s, pos_e = min(max(0, pos_s), num_frames), min(max(0, pos_e), num_frames)
assert pos_s <= pos_e, (num_frames, s, e)
base_idx = torch.nonzero(data['input_ids'][0] == model.config.vision_start_token_id).item()
pos_s, pos_e = pos_s * window + base_idx + 1, pos_e * window + base_idx + 2
input_ids = data['input_ids'][0].tolist()
input_ids.insert(pos_s, model.config.seg_s_token_id)
input_ids.insert(pos_e, model.config.seg_e_token_id)
data['input_ids'] = torch.LongTensor([input_ids])
data['attention_mask'] = torch.ones_like(data['input_ids'])
# ===========================================
data = data.to(device)
model.base_model.disable_adapter_layers()
model.base_model.enable_adapter_layers()
model.set_adapter('verifier')
with torch.inference_mode():
logits = model(**data).logits[0, -1].softmax(dim=-1)
# NOTE: magic numbers here
# In Qwen2-VL vocab: 9454 -> Yes, 2753 -> No
score = (logits[9454] - logits[2753]).sigmoid().item()
prob.append(score)
if i == 0:
history[-1]['content'] = history[-1]['content'].rstrip('.')[:-1]
response = f'\nCandidate ID {i}: P(Yes) = {score:.2f}'
for j, text in enumerate(response.split(' ')):
history[-1]['content'] += ' ' + text if j > 0 else text
yield history
elapsed_time = round(time.perf_counter() - start_time, 1)
history[-1]['metadata']['title'] += f' ({elapsed_time} seconds)'
yield history
ranks = torch.Tensor(prob).argsort(descending=True).tolist()
prob = [prob[idx] for idx in ranks]
pred = [pred[idx] for idx in ranks]
conf = [conf[idx] for idx in ranks]
response = 'After verification, the candidate moments are re-ranked as follows:\n'
response += '\n| ID | Start Time | End Time | Score |'
response += '\n| :-: | :-: | :-: | :-: |'
ids = list(range(len(ranks)))
for r, p, c in zip(ranks, pred, prob):
response += f'\n| {ids[r]} | {seconds_to_hms(p[0])} | {seconds_to_hms(p[1])} | {c:.2f} |'
response += f'\n\nTherefore, the target moment should be from <span style="color:red">{seconds_to_hms(pred[0][0])}</span> to <span style="color:red">{seconds_to_hms(pred[0][1])}</span>.'
history.append({'role': 'assistant', 'content': ''})
for i, text in enumerate(response.split(' ')):
history[-1]['content'] += ' ' + text if i > 0 else text
yield history
if 'ans' in role and do_answering:
text = f'{prompt} Please think step by step and provide your response.'
history.append({
'metadata': {
'title': '๐ Working as Answerer...'
},
'role': 'assistant',
'content': f'##### Answerer Prompt:\n\n{html.escape(text)}\n\n##### Answerer Response:\n\n...'
})
yield history
start_time = time.perf_counter()
# choose the potential best moment
selected = pred[0] if 'gnd' in role and do_grounding else [0, duration]
s, e = parse_span(selected, duration, 32)
messages = [{
'role':
'user',
'content': [{
'type': 'video',
'video': video,
'num_threads': 1,
'video_start': s,
'video_end': e,
'min_pixels': 128 * 28 * 28,
'max_pixels': 256 * 28 * 28,
'max_frames': 32,
'fps': 2.0
}, {
'type': 'text',
'text': text
}]
}]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
images, videos = process_vision_info(messages)
data = processor(text=[text], images=images, videos=videos, return_tensors='pt')
data = data.to(device)
with model.disable_adapter():
output_ids = model.generate(
**data,
do_sample=temperature > 0,
temperature=temperature if temperature > 0 else None,
top_p=None,
top_k=None,
repetition_penalty=None,
max_new_tokens=max_new_tokens)
assert data.input_ids.size(0) == output_ids.size(0) == 1
output_ids = output_ids[0, data.input_ids.size(1):]
if output_ids[-1] == processor.tokenizer.eos_token_id:
output_ids = output_ids[:-1]
response = processor.decode(output_ids, clean_up_tokenization_spaces=False)
for i, text in enumerate(response.split(' ')):
if i == 0:
history[-1]['content'] = history[-1]['content'].rstrip('.')
history[-1]['content'] += text
else:
history[-1]['content'] += ' ' + text
yield history
elapsed_time = round(time.perf_counter() - start_time, 1)
history[-1]['metadata']['title'] += f' ({elapsed_time} seconds)'
yield history
if 'gnd' in role and do_grounding:
response = f'After zooming in and analyzing the target moment, I finalize my answer: <span style="color:green">{response}</span>'
else:
response = f'After watching the whole video, my answer is: <span style="color:green">{response}</span>'
history.append({'role': 'assistant', 'content': ''})
for i, text in enumerate(response.split(' ')):
history[-1]['content'] += ' ' + text if i > 0 else text
yield history
def build_demo():
chat = gr.Chatbot(
type='messages',
height='70em',
resizable=True,
avatar_images=[f'{PATH}/assets/user.png', f'{PATH}/assets/bot.png'],
placeholder='A conversation with VideoMind',
label='VideoMind')
prompt = gr.Textbox(label='Text Prompt', placeholder='Ask a question about the video...')
with gr.Blocks(title=TITLE, js=JS) as demo:
gr.HTML(LOGO)
gr.HTML(BADGE)
gr.Markdown(DISC)
with gr.Row():
with gr.Column(scale=3):
video = gr.Video()
with gr.Group():
role = gr.CheckboxGroup(
choices=[('๐บ๏ธ Planner', 'pla'), ('๐ Grounder', 'gnd'), ('๐ Verifier', 'ver'),
('๐ Answerer', 'ans')],
value=['pla', 'gnd', 'ver', 'ans'],
interactive=True,
label='Roles',
info='Select the role(s) you would like to activate.')
role.change(update_placeholder, role, prompt)
with gr.Accordion(label='Hyperparameters', open=False):
max_candidates = gr.Slider(
1,
100,
value=5,
step=1,
interactive=True,
label='Max Candidate Moments',
info='The maximum number of candidate moments in Grounder (Default: 5)')
temperature = gr.Slider(
0,
1,
value=0,
step=0.1,
interactive=True,
label='Temperature',
info='Higher value leads to more creativity and randomness (Default: 0)')
max_new_tokens = gr.Slider(
1,
1024,
value=256,
step=1,
interactive=True,
label='Max Output Tokens',
info='The maximum number of output tokens for each role (Default: 256)')
prompt.render()
with gr.Row():
random_btn = gr.Button(value='๐ฎ Random')
random_btn.click(random_sample, None, [video, prompt, role])
reset_btn = gr.ClearButton([video, prompt, chat], value='๐๏ธ Reset')
reset_btn.click(reset_components, None, [role, max_candidates, temperature, max_new_tokens])
submit_btn = gr.Button(value='๐ Submit', variant='primary')
ctx = submit_btn.click(disable_btns, None, [random_btn, reset_btn, submit_btn])
ctx = ctx.then(main, [video, prompt, role, max_candidates, temperature, max_new_tokens], chat)
ctx.then(enable_btns, None, [random_btn, reset_btn, submit_btn])
gr.Examples(examples=EXAMPLES, inputs=[video, prompt, role], examples_per_page=3)
with gr.Column(scale=5):
chat.render()
return demo
if __name__ == '__main__':
demo = build_demo()
demo.queue()
demo.launch(server_name='0.0.0.0', allowed_paths=[f'{PATH}/assets', f'{PATH}/examples'])
|