File size: 17,033 Bytes
6073e55
23fdbc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License.

import argparse
import copy
import json
from contextlib import nullcontext

import nncore
import torch

from videomind.constants import GROUNDER_PROMPT, PLANNER_PROMPT, VERIFIER_PROMPT
from videomind.dataset.hybrid import DATASETS
from videomind.dataset.utils import process_vision_info
from videomind.model.builder import build_model
from videomind.utils.io import get_duration, load_subtitle
from videomind.utils.parser import parse_query, parse_span


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--dataset')
    parser.add_argument('--pred_path')
    parser.add_argument('--model_gnd_path')
    parser.add_argument('--model_ver_path')
    parser.add_argument('--model_pla_path')
    parser.add_argument('--model_ans_path')
    parser.add_argument('--split', default='test', choices=['train', 'valid', 'test'])
    parser.add_argument('--style', default='mcq', choices=['mcq', 'options', 'direct'])
    parser.add_argument('--use_subtitle', action='store_true')
    parser.add_argument('--auto_rephrasing', action='store_true')
    parser.add_argument('--auto_planning', action='store_true')
    parser.add_argument('--num_threads', type=int, default=1)
    parser.add_argument('--device', default='auto')
    parser.add_argument('--chunk', type=int, default=1)
    parser.add_argument('--index', type=int, default=0)
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()

    if args.chunk > 1:
        pred_path = nncore.join(args.pred_path, f'output_{args.index}.json')
    else:
        pred_path = nncore.join(args.pred_path, 'output.json')

    print(f'Dataset: {args.dataset}({args.split}) Chunk: {args.chunk} Index: {args.index} Output Path: {pred_path}')

    # NOTE:
    # 1. grounder is always true so no need to store
    # 2. answerer would always be used (when set to false, the base model would be used as the answerer)
    adapter_state = dict(planner=False, verifier=False, answerer=False)

    print('Initializing role *grounder*')
    model, processor = build_model(args.model_gnd_path, device=args.device)
    device = next(model.parameters()).device

    if args.model_pla_path is not None:
        adapter_path = nncore.join(args.model_pla_path, 'planner')
        if nncore.is_dir(adapter_path):
            print('Initializing role *planner*')
            model.load_adapter(adapter_path, adapter_name='planner')
            adapter_state['planner'] = True

    if args.model_ver_path is not None:
        adapter_path = nncore.join(args.model_ver_path, 'verifier')
        if nncore.is_dir(adapter_path):
            print('Initializing role *verifier*')
            model.load_adapter(adapter_path, adapter_name='verifier')
            adapter_state['verifier'] = True

    if args.model_ans_path is not None:
        adapter_path = nncore.join(args.model_ans_path, 'answerer')
        if nncore.is_dir(adapter_path):
            print('Initializing role *answerer*')
            model.load_adapter(adapter_path, adapter_name='answerer')
            adapter_state['answerer'] = True

    annos = DATASETS.get(args.dataset).load_annos(split=args.split)
    annos = [annos[i::args.chunk] for i in range(args.chunk)][args.index]

    dumps = []
    for i in nncore.ProgressBar(range(len(annos))):
        anno = copy.deepcopy(annos[i])
        dump = copy.deepcopy(annos[i])

        video_path, duration, span = anno['video_path'], anno.get('duration'), anno.get('span')

        if duration is None:
            duration = get_duration(video_path, num_threads=args.num_threads)
            dump['duration'] = duration

        print()
        print(video_path)
        print(duration)

        # sometimes the sample is for grounding only
        do_answering = all(k in anno for k in ('question', 'options'))

        if do_answering:
            question, options, ans = anno['question'], anno['options'], anno['ans']

            if args.style in ('mcq', 'options'):
                prompt = question + '\nOptions:'
                for idx, opt in enumerate(options):
                    prompt += f"\n({chr(ord('A') + idx)}) {opt.capitalize()}"
                prompt += '\nPlease only give the best option.'
            else:
                prompt = question

            print(prompt)
            print(options)
            print(ans)
        else:
            question = anno['query']
            print(question)

        # do grounding by default
        do_grounding = True

        # initialize grounding query as question
        query = question

        # initialize agent list
        dump['agents'] = []

        if adapter_state['planner'] and (args.auto_rephrasing or args.auto_planning):
            print('=============== planner ===============')

            dump['agents'].append('planner')

            messages = [{
                'role':
                'user',
                'content': [{
                    'type': 'video',
                    'video': video_path,
                    'num_threads': args.num_threads,
                    'min_pixels': 36 * 28 * 28,
                    'max_pixels': 64 * 28 * 28,
                    'max_frames': 100,
                    'fps': 1.0
                }, {
                    'type': 'text',
                    'text': PLANNER_PROMPT.format(question)
                }]
            }]

            text = processor.apply_chat_template(messages, add_generation_prompt=True)
            print(text)
            images, videos = process_vision_info(messages)
            data = processor(text=[text], images=images, videos=videos, return_tensors='pt')
            data = data.to(device)

            model.base_model.disable_adapter_layers()
            model.base_model.enable_adapter_layers()
            model.set_adapter('planner')

            output_ids = model.generate(
                **data,
                do_sample=False,
                temperature=None,
                top_p=None,
                top_k=None,
                repetition_penalty=None,
                max_new_tokens=256)

            assert data.input_ids.size(0) == output_ids.size(0) == 1
            output_ids = output_ids[0, data.input_ids.size(1):]
            if output_ids[-1] == processor.tokenizer.eos_token_id:
                output_ids = output_ids[:-1]
            response = processor.decode(output_ids, clean_up_tokenization_spaces=False)
            print(response)

            dump['planner_response'] = response

            try:
                parsed = json.loads(response)
                action = parsed[0] if isinstance(parsed, list) else parsed
                if args.auto_rephrasing and action['type'].lower() == 'grounder' and action['value']:
                    query = action['value']
                    dump['planner_parsed_query'] = query
                elif args.auto_planning and action['type'].lower() == 'answerer':
                    do_grounding = False
            except Exception:
                print('WARNING: Failed to parse planner response')

        if do_grounding:
            print('=============== grounder ===============')

            dump['agents'].append('grounder')

            query = parse_query(query)

            messages = [{
                'role':
                'user',
                'content': [{
                    'type': 'video',
                    'video': video_path,
                    'num_threads': args.num_threads,
                    'min_pixels': 36 * 28 * 28,
                    'max_pixels': 64 * 28 * 28,
                    'max_frames': 150,
                    'fps': 1.0
                }, {
                    'type': 'text',
                    'text': GROUNDER_PROMPT.format(query)
                }]
            }]

            text = processor.apply_chat_template(messages, add_generation_prompt=True)
            print(text)
            images, videos = process_vision_info(messages)
            data = processor(text=[text], images=images, videos=videos, return_tensors='pt')
            data = data.to(device)

            model.base_model.disable_adapter_layers()
            model.base_model.enable_adapter_layers()
            model.set_adapter('grounder')

            output_ids = model.generate(
                **data,
                do_sample=False,
                temperature=None,
                top_p=None,
                top_k=None,
                repetition_penalty=None,
                max_new_tokens=256)

            assert data.input_ids.size(0) == output_ids.size(0) == 1
            output_ids = output_ids[0, data.input_ids.size(1):]
            if output_ids[-1] == processor.tokenizer.eos_token_id:
                output_ids = output_ids[:-1]
            response = processor.decode(output_ids, clean_up_tokenization_spaces=False)
            print(response)

            dump['grounder_response'] = response
            dump['grounder_success'] = len(model.reg) > 0

            if dump['grounder_success']:
                # 1. extract timestamps and confidences
                blob = model.reg[0].cpu().float()
                pred, conf = blob[:, :2] * duration, blob[:, -1].tolist()

                # 2. clamp timestamps
                pred = pred.clamp(min=0, max=duration)

                # 3. round timestamps to units
                unit = getattr(DATASETS.get(args.dataset), 'UNIT', 0.001)
                pred = torch.round(pred / unit).long() * unit

                # 4. sort timestamps
                inds = (pred[:, 1] - pred[:, 0] < 0).nonzero()[:, 0]
                pred[inds] = pred[inds].roll(1)

                # 5. convert timestamps to list
                pred = pred.tolist()
            else:
                print('WARNING: Failed to parse grounder response')

                if adapter_state['verifier']:
                    pred = [[i * duration / 6, (i + 2) * duration / 6] for i in range(5)]
                    conf = [0] * 5
                else:
                    pred = [[0, duration]]
                    conf = [0]

            print(pred[0], span, duration)
            dump['pred'] = pred
            dump['conf'] = conf

        if do_grounding and adapter_state['verifier'] and len(pred) > 1:
            print('=============== verifier ===============')

            dump['agents'].append('verifier')

            # using top-5 predictions
            probs = []
            for cand in pred[:5]:
                s0, e0 = parse_span(cand, duration, 2)
                offset = (e0 - s0) / 2
                s1, e1 = parse_span([s0 - offset, e0 + offset], duration)

                # percentage of s0, e0 within s1, e1
                s = (s0 - s1) / (e1 - s1)
                e = (e0 - s1) / (e1 - s1)

                messages = [{
                    'role':
                    'user',
                    'content': [{
                        'type': 'video',
                        'video': video_path,
                        'num_threads': args.num_threads,
                        'video_start': s1,
                        'video_end': e1,
                        'min_pixels': 36 * 28 * 28,
                        'max_pixels': 64 * 28 * 28,
                        'max_frames': 64,
                        'fps': 2.0
                    }, {
                        'type': 'text',
                        'text': VERIFIER_PROMPT.format(question)
                    }]
                }]

                text = processor.apply_chat_template(messages, add_generation_prompt=True)
                print(text)
                images, videos = process_vision_info(messages)
                data = processor(text=[text], images=images, videos=videos, return_tensors='pt')

                # ===== insert segment start/end tokens =====
                video_grid_thw = data['video_grid_thw'][0]
                num_frames, window = int(video_grid_thw[0]), int(video_grid_thw[1] * video_grid_thw[2] / 4)
                assert num_frames * window * 4 == data['pixel_values_videos'].size(0)

                pos_s, pos_e = round(s * num_frames), round(e * num_frames)
                pos_s, pos_e = min(max(0, pos_s), num_frames), min(max(0, pos_e), num_frames)
                assert pos_s <= pos_e, (num_frames, s, e)

                base_idx = torch.nonzero(data['input_ids'][0] == model.config.vision_start_token_id).item()
                pos_s, pos_e = pos_s * window + base_idx + 1, pos_e * window + base_idx + 2

                input_ids = data['input_ids'][0].tolist()
                input_ids.insert(pos_s, model.config.seg_s_token_id)
                input_ids.insert(pos_e, model.config.seg_e_token_id)
                data['input_ids'] = torch.LongTensor([input_ids])
                data['attention_mask'] = torch.ones_like(data['input_ids'])
                # ===========================================

                data = data.to(device)

                model.base_model.disable_adapter_layers()
                model.base_model.enable_adapter_layers()
                model.set_adapter('verifier')

                with torch.inference_mode():
                    logits = model(**data).logits[0, -1].softmax(dim=-1)

                # NOTE: magic numbers here
                # In Qwen2-VL vocab: 9454 -> Yes, 2753 -> No
                score = (logits[9454] - logits[2753]).sigmoid().item()
                probs.append(score)

            ranks = torch.Tensor(probs).argsort(descending=True).tolist()
            print(probs)
            print(ranks)

            pred = [pred[idx] for idx in ranks]
            conf = [conf[idx] for idx in ranks]
            print(pred[0], span, duration)

            dump['probs'] = probs
            dump['ranks'] = ranks
            dump['pred_ori'] = dump['pred']
            dump['conf_ori'] = dump['conf']
            dump['pred'] = pred
            dump['conf'] = conf

        if do_answering:
            print('=============== answerer ===============')

            dump['agents'].append('answerer')

            # choose the potential best moment
            selected = pred[0] if 'pred' in dump else [0, duration]

            min_len = getattr(DATASETS.get(args.dataset), 'MIN_LEN', 32)
            s, e = parse_span(selected, duration, min_len)
            print([s, e], span, duration)

            if args.use_subtitle and 'subtitle_path' in anno and nncore.is_file(anno['subtitle_path']):
                # use only the first 100 subtitles to save memory
                subs = load_subtitle(anno['subtitle_path'])[:100]
                subs = [f'{round(a - s, 1)}s - {round(b - s, 1)}s, {t}\n' for a, b, t in subs if a >= s and b <= e]
                subs = ''.join(subs)
                prompt = f'You are given a video with {round(e - s, 1)} seconds long.\nSubtitles:\n{subs}' + prompt

            messages = [{
                'role':
                'user',
                'content': [{
                    'type': 'video',
                    'video': video_path,
                    'num_threads': args.num_threads,
                    'video_start': s,
                    'video_end': e,
                    'min_pixels': 128 * 28 * 28,
                    'max_pixels': 256 * 28 * 28,
                    'max_frames': 32,
                    'fps': 2.0
                }, {
                    'type': 'text',
                    'text': prompt
                }]
            }]

            text = processor.apply_chat_template(messages, add_generation_prompt=True)
            text += 'Best Option: (' if args.style == 'mcq' else ''
            print(text)
            images, videos = process_vision_info(messages)
            data = processor(text=[text], images=images, videos=videos, return_tensors='pt')
            data = data.to(device)

            if adapter_state['answerer']:
                model.base_model.disable_adapter_layers()
                model.base_model.enable_adapter_layers()
                model.set_adapter('answerer')
                context = nullcontext
            else:
                context = model.disable_adapter

            with context():
                output_ids = model.generate(
                    **data,
                    do_sample=False,
                    temperature=None,
                    top_p=None,
                    top_k=None,
                    repetition_penalty=None,
                    max_new_tokens=256)

            assert data.input_ids.size(0) == output_ids.size(0) == 1
            output_ids = output_ids[0, data.input_ids.size(1):]
            if output_ids[-1] == processor.tokenizer.eos_token_id:
                output_ids = output_ids[:-1]
            response = processor.decode(output_ids, clean_up_tokenization_spaces=False)
            print(response)

            dump['answerer_response'] = response
            dump['response'] = response

        dumps.append(dump)

    nncore.dump(dumps, pred_path)