File size: 10,333 Bytes
6073e55
23fdbc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License.

import warnings

import nncore
import torch
from deepspeed import zero
from safetensors.torch import load_model, save_file
from torch.utils.data import Sampler
from transformers import Trainer, TrainerCallback
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.trainer_pt_utils import get_parameter_names
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers.utils import CHAT_TEMPLATE_NAME


def gather(param):
    if hasattr(param, 'ds_id'):
        with zero.GatheredParameters([param]):
            param = param.data.detach().cpu().clone()
    else:
        param = param.detach().cpu().clone()
    return param


def gather_lora_params(model, bias):
    assert bias in ('lora_only', 'all', 'none')

    if bias == 'lora_only':
        state_dict, maybe_lora_bias, lora_bias_names = dict(), dict(), set()
        for n, p in model.named_parameters():
            if 'modules_to_save' in n:
                state_dict[n] = p
            elif 'lora_' in n:
                state_dict[n] = p
                bias_name = n.split('lora_')[0] + 'bias'
                lora_bias_names.add(bias_name)
            elif 'bias' in n:
                maybe_lora_bias[n] = p
        for n, p in maybe_lora_bias:
            if bias_name in lora_bias_names:
                state_dict[bias_name] = p
    else:
        keys = ['lora_', 'modules_to_save', 'bias'] if bias == 'all' else ['lora_', 'modules_to_save']
        state_dict = {n: p for n, p in model.named_parameters() if any(k in n for k in keys)}

    state_dict = {n: gather(p) for n, p in state_dict.items()}
    return state_dict


def gather_key_params(model, keys):
    state_dict = {n: p for n, p in model.named_parameters() if p.requires_grad and any(k in n for k in keys)}
    state_dict = {n: gather(p) for n, p in state_dict.items()}
    return state_dict


class GroupSampler(Sampler):

    def __init__(self, group_size, data_types, seed):
        self.group_size = group_size
        self.data_types = data_types
        self.seed = seed

    def __len__(self):
        return len(self.data_types)

    def __iter__(self):
        g = torch.Generator()
        g.manual_seed(self.seed + self.epoch)

        # avoid using dict or set here as they are not deterministic
        unique_types, groups = [], []
        for i, t in enumerate(self.data_types):
            if t not in unique_types:
                unique_types.append(t)
                groups.append([])
            groups[unique_types.index(t)].append(i)

        group_batches = []
        for group in groups:
            inds = [group[i] for i in torch.randperm(len(group), generator=g)]
            batches = [inds[i:i + self.group_size] for i in range(0, len(inds), self.group_size)]

            if len(batches[-1]) < self.group_size:
                batches = batches[:-1]

            group_batches += batches

        perm_group_batches = [group_batches[i] for i in torch.randperm(len(group_batches), generator=g)]
        inds = [i for batch in perm_group_batches for i in batch]

        return iter(inds)

    def set_epoch(self, epoch):
        self.epoch = epoch


class SetEpochCallback(TrainerCallback):

    # partially fixed in https://github.com/huggingface/accelerate/pull/3246
    # but not for the case of batch_sampler.batch_sampler.sampler
    def on_epoch_begin(self, args, state, control, **kwargs):
        shard_sampler = kwargs['train_dataloader'].batch_sampler
        batch_sampler = getattr(shard_sampler, 'batch_sampler', shard_sampler)
        batch_sampler.sampler.set_epoch(int(state.epoch))


class CustomTrainer(Trainer):

    def __init__(self, *args, processor=None, head_keys=None, **kwargs):
        super().__init__(*args, tokenizer=processor, **kwargs)
        self.add_callback(SetEpochCallback())
        self.processor = processor
        self.head_keys = head_keys

    def _get_train_sampler(self):
        if self.args.group_by_data_type:
            return GroupSampler(self.args.train_batch_size * self.args.world_size, self.train_dataset.data_types,
                                self.args.seed)
        else:
            return super()._get_train_sampler()

    def _load_from_checkpoint(self, resume_from_checkpoint, model=None):
        if model is None:
            model = self.model

        super()._load_from_checkpoint(resume_from_checkpoint, model=model)

        partial_path = nncore.join(resume_from_checkpoint, 'pytorch_model.safetensors')
        if nncore.is_file(partial_path):
            load_model(model, partial_path, strict=False, device=model.device)

    def create_optimizer(self):
        if self.optimizer is None:
            grad_ps = [(n, p) for n, p in self.model.named_parameters() if p.requires_grad]

            decay_ps = get_parameter_names(self.model, ALL_LAYERNORM_LAYERS)
            decay_ps = [n for n in decay_ps if 'bias' not in n]

            if self.args.lora_lr is None:
                self.args.lora_lr = self.args.learning_rate

            if self.args.head_lr is None:
                self.args.head_lr = self.args.learning_rate

            lora_ps = [n for n, _ in grad_ps if 'lora' in n]
            head_ps = [n for n, _ in grad_ps if any(k in n for k in self.head_keys)]
            assert all(n not in lora_ps for n in head_ps) and all(n not in head_ps for n in lora_ps)

            groups = [{
                'params': [p for n, p in grad_ps if (n in decay_ps and n not in lora_ps and n not in head_ps)],
                'weight_decay': self.args.weight_decay
            }, {
                'params': [p for n, p in grad_ps if (n not in decay_ps and n not in lora_ps and n not in head_ps)],
                'weight_decay': 0.0
            }, {
                'params': [p for n, p in grad_ps if (n in decay_ps and n in lora_ps)],
                'weight_decay': self.args.weight_decay,
                'lr': self.args.lora_lr
            }, {
                'params': [p for n, p in grad_ps if (n not in decay_ps and n in lora_ps)],
                'weight_decay': 0.0,
                'lr': self.args.lora_lr
            }, {
                'params': [p for n, p in grad_ps if (n in decay_ps and n in head_ps)],
                'weight_decay': self.args.weight_decay,
                'lr': self.args.head_lr
            }, {
                'params': [p for n, p in grad_ps if (n not in decay_ps and n in head_ps)],
                'weight_decay': 0.0,
                'lr': self.args.head_lr
            }]

            optim_cls, kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)
            self.optimizer = optim_cls(groups, **kwargs)

        return self.optimizer

    def gather_and_save_model(self):
        deepspeed_zero3 = self.accelerator.deepspeed_config['zero_optimization']['stage'] == 3
        output_dir = self.args.output_dir

        if self.args.should_save:
            print(f'Saving final model to {nncore.abs_path(output_dir)}...')

        if self.processor is not None and self.args.should_save:
            self.processor.save_pretrained(output_dir)

            # https://github.com/huggingface/transformers/pull/33462
            if self.processor.chat_template is not None:
                chat_template = {'chat_template': self.processor.chat_template}
                nncore.dump(chat_template, nncore.join(output_dir, CHAT_TEMPLATE_NAME), indent=2)

        if self.args.save_full_model and self.args.lora_enable and deepspeed_zero3:
            warnings.warn('LoRA models cannot be saved in full mode under zero3, saving adapters instead')
            self.args.save_full_model = False

        if self.args.save_full_model:
            if self.args.lora_enable:
                self.model = self.model.merge_and_unload()

            if deepspeed_zero3 and not self.model_wrapped.zero_gather_16bit_weights_on_model_save():
                warnings.warn('Saving zero checkpoint, use zero_to_fp32.py to recover weights')
                self.model_wrapped.save_checkpoint(output_dir)
                return

            if deepspeed_zero3:
                state_dict = self.model_wrapped._zero3_consolidated_16bit_state_dict()
            else:
                state_dict = self.model.state_dict()

            if self.args.should_save:
                state_dict = {k[17:] if k.startswith('base_model.model.') else k: v for k, v in state_dict.items()}
                self._save(output_dir, state_dict=state_dict)
        else:
            if self.args.lora_enable:
                state_dict = gather_lora_params(self.model, self.args.lora_bias)
                if self.args.should_save:
                    self.model.save_pretrained(output_dir, state_dict=state_dict)

            if self.args.should_save:
                self.model.config.save_pretrained(output_dir)
                self.model.generation_config.save_pretrained(output_dir)
                self.tokenizer.save_pretrained(output_dir)

            state_dict = gather_key_params(self.model, self.head_keys)
            if self.args.should_save and state_dict:
                save_file(state_dict, nncore.join(output_dir, 'pytorch_model.safetensors'))

    def _save_checkpoint(self, model, trial, **kwargs):
        output_dir = self._get_output_dir(trial)
        output_dir = nncore.join(output_dir, f'{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}')

        if self.args.should_save:
            print(f'Saving checkpoint to {nncore.abs_path(output_dir)}...')

        super()._save_checkpoint(model, trial, **kwargs)

        if self.processor is not None and self.args.should_save:
            self.processor.save_pretrained(output_dir)

            # https://github.com/huggingface/transformers/pull/33462
            if self.processor.chat_template is not None:
                chat_template = {'chat_template': self.processor.chat_template}
                nncore.dump(chat_template, nncore.join(output_dir, CHAT_TEMPLATE_NAME), indent=2)

        if self.args.lora_enable:
            state_dict = gather_key_params(self.model, self.head_keys)
            if self.args.should_save:
                self.model.config.save_pretrained(output_dir)
                save_file(state_dict, nncore.join(output_dir, 'pytorch_model.safetensors'))