# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. import nncore from torch.utils.data import Dataset from videomind.dataset.hybrid import DATASETS from videomind.utils.parser import parse_query, parse_question @DATASETS.register(name='cgbench') class CGBenchDataset(Dataset): ANNO_PATH_TEST = 'data/cgbench/cgbench_mini.json' VIDEO_ROOT = 'data/cgbench/videos_3fps_480_noaudio' SUBTITLE_ROOT = 'data/cgbench/subtitles' UNIT = 0.001 @classmethod def load_annos(self, split='test'): assert split == 'test' raw_annos = nncore.load(self.ANNO_PATH_TEST) annos = [] for raw_anno in raw_annos: vid = raw_anno['video_uid'] anno = dict( source='cgbench', data_type='multimodal', video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), subtitle_path=nncore.join(self.SUBTITLE_ROOT, vid + '.srt'), duration=raw_anno['duration'], query=parse_query(raw_anno['question']), question=parse_question(raw_anno['question']), options=[o.capitalize() for o in raw_anno['choices']], answer=raw_anno['answer'].capitalize(), ans=raw_anno['right_answer'], span=raw_anno['clue_intervals'], task=raw_anno['sub_category'], domain=raw_anno['domain']) annos.append(anno) return annos