# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. import nncore from videomind.dataset.hybrid import DATASETS from videomind.dataset.wrappers import GroundingDataset from videomind.utils.parser import parse_query @DATASETS.register(name='ego4d_nlq') class Ego4DNLQDataset(GroundingDataset): ANNO_PATH_TRAIN = 'data/ego4d_nlq/nlq_train.jsonl' ANNO_PATH_VALID = 'data/ego4d_nlq/nlq_val.jsonl' VIDEO_ROOT = 'data/ego4d/v2/videos_3fps_480_noaudio' UNIT = 0.001 @classmethod def load_annos(self, split='train'): if split == 'train': raw_annos = nncore.load(self.ANNO_PATH_TRAIN) else: raw_annos = nncore.load(self.ANNO_PATH_VALID) annos = [] for raw_anno in raw_annos: assert len(raw_anno['relevant_windows']) == 1 anno = dict( source='ego4d_nlq', data_type='grounding', video_path=nncore.join(self.VIDEO_ROOT, raw_anno['vid'] + '.mp4'), duration=raw_anno['duration'], query=parse_query(raw_anno['query']), span=raw_anno['relevant_windows']) annos.append(anno) return annos