# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. import nncore from videomind.dataset.hybrid import DATASETS from videomind.dataset.wrappers import GroundingDataset from videomind.utils.parser import parse_query @DATASETS.register(name='internvid_vtime') class InternVidVTimeDataset(GroundingDataset): ANNO_PATH = 'data/internvid_vtime/anno_internvid_vtime_query_gpt4o_mini.jsonl' VIDEO_ROOT = 'data/internvid_vtime/videos_crop_3fps_480_noaudio' UNIT = 0.1 @classmethod def load_annos(self, split='train'): assert split == 'train' raw_annos = nncore.load(self.ANNO_PATH) all_videos = nncore.ls(self.VIDEO_ROOT, ext='.mp4') all_videos = set(v[:11] for v in all_videos) annos = [] for raw_anno in raw_annos: vid = raw_anno['vid'] if vid not in all_videos: continue anno = dict( source='internvid_vtime', data_type='grounding', video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), duration=raw_anno['duration'], query=parse_query(raw_anno['query']), span=[raw_anno['span']]) annos.append(anno) return annos