# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. import nncore from torch.utils.data import Dataset from videomind.dataset.hybrid import DATASETS from videomind.utils.parser import parse_query, parse_question @DATASETS.register(name='longvideobench') class LongVideoBenchDataset(Dataset): ANNO_PATH_VALID = 'data/longvideobench/lvb_val.json' ANNO_PATH_TEST = 'data/longvideobench/lvb_test_wo_gt.json' VIDEO_ROOT = 'data/longvideobench/videos_3fps_480_noaudio' @classmethod def load_annos(self, split='valid'): if split == 'valid': raw_annos = nncore.load(self.ANNO_PATH_VALID) else: print('WARNING: Test split does not have ground truth annotations') raw_annos = nncore.load(self.ANNO_PATH_TEST) annos = [] for raw_anno in raw_annos: vid = raw_anno['video_id'] if vid.startswith('@'): vid = vid[-19:] # videos might come from youtube or other sources assert len(vid) in (11, 19) anno = dict( source='longvideobench', data_type='multimodal', video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), query=parse_query(raw_anno['question']), question=parse_question(raw_anno['question']), options=raw_anno['candidates'], task=str(raw_anno['duration_group']), level=raw_anno['level'], question_category=raw_anno['question_category']) if 'correct_choice' in raw_anno: anno['answer'] = raw_anno['candidates'][raw_anno['correct_choice']] anno['ans'] = chr(ord('A') + raw_anno['correct_choice']) annos.append(anno) return annos