# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. import nncore from videomind.dataset.hybrid import DATASETS from videomind.dataset.wrappers import AnsweringCropDataset, AnsweringDataset, GroundingDataset from videomind.utils.parser import parse_query, parse_question @DATASETS.register(name='rextime') class ReXTimeDataset(AnsweringDataset): ANNO_PATH_TRAIN = 'data/rextime/rextime_train.json' ANNO_PATH_VALID = 'data/rextime/rextime_val.json' ANNO_PATH_TEST = 'data/rextime/rextime_test_release.json' VIDEO_ROOT_ANET = 'data/activitynet/videos_3fps_480_noaudio' VIDEO_ROOT_QVHL = 'data/qvhighlights/videos_3fps_480_noaudio' DURATIONS_ANET = 'data/activitynet/durations.json' DURATIONS_QVHL = 'data/qvhighlights/durations.json' SOURCE = 'rextime' DATA_TYPE = 'multimodal' UNIT = 1.0 MIN_LEN = 64 @classmethod def load_annos(self, split='train'): if split == 'train': raw_annos = nncore.load(self.ANNO_PATH_TRAIN) elif split == 'valid': raw_annos = nncore.load(self.ANNO_PATH_VALID) else: print('WARNING: Test split does not have ground truth annotations') raw_annos = nncore.load(self.ANNO_PATH_TEST) durations_anet = nncore.load(self.DURATIONS_ANET) durations_qvhl = nncore.load(self.DURATIONS_QVHL) annos = [] for raw_anno in raw_annos: vid = raw_anno['vid'] if len(vid) == 13: video_path = nncore.join(self.VIDEO_ROOT_ANET, vid + '.mp4') duration = durations_anet[vid] else: video_path = nncore.join(self.VIDEO_ROOT_QVHL, vid + '.mp4') duration = durations_qvhl[vid] anno = dict( source=self.SOURCE, data_type=self.DATA_TYPE, video_path=video_path, duration=duration, query=parse_query(raw_anno['question']), question=parse_question(raw_anno['question']), options=[o.capitalize() for o in raw_anno['options']], answer=raw_anno['answer'].replace('From to , ', '').capitalize(), ans=raw_anno['ans'], span=[raw_anno['span']], task=raw_anno['category']) annos.append(anno) return annos @DATASETS.register(name='rextime_crop') class ReXTimeCropDataset(AnsweringCropDataset, ReXTimeDataset): SOURCE = 'rextime_crop' @DATASETS.register(name='rextime_grounding') class ReXTimeGroundingDataset(GroundingDataset, ReXTimeDataset): SOURCE = 'rextime_grounding' DATA_TYPE = 'grounding'