# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. import nncore from torch.utils.data import Dataset import pandas as pd from videomind.dataset.hybrid import DATASETS from videomind.utils.parser import parse_query, parse_question @DATASETS.register(name='videomme') class VideoMMEDataset(Dataset): ANNO_PATH = 'data/videomme/test-00000-of-00001.parquet' VIDEO_ROOT = 'data/videomme/videos' SUBTITLE_ROOT = 'data/videomme/subtitles' @classmethod def load_annos(self, split='test'): assert split == 'test' raw_annos = pd.read_parquet(self.ANNO_PATH).to_dict(orient='records') annos = [] for raw_anno in raw_annos: vid = raw_anno['videoID'] options = raw_anno['options'].tolist() assert len(options) == 4 assert all(any(o.startswith(k) for k in ('A. ', 'B. ', 'C. ', 'D. ')) for o in options) options = [o[3:] for o in options] ans = raw_anno['answer'] answer = options[ord(ans) - ord('A')] assert ans in 'ABCD' anno = dict( source='videomme', data_type='multimodal', video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), query=parse_query(raw_anno['question']), question=parse_question(raw_anno['question']), options=options, answer=answer, ans=ans, task=raw_anno['duration']) annos.append(anno) return annos