# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. import copy from torch.utils.data import Dataset from videomind.constants import GROUNDER_PROMPT, REG_TOKEN class GroundingDataset(Dataset): def __init__(self, processor, model_args, data_args, training_args): super(GroundingDataset, self).__init__() raw_annos = self.load_annos() annos = [] for anno in raw_annos: num_words = len(anno['query'].split(' ')) if data_args.min_num_words >= 0 and num_words < data_args.min_num_words: continue if data_args.max_num_words >= 0 and num_words > data_args.max_num_words: continue if data_args.min_video_len >= 0 and anno.get('duration', float('inf')) < data_args.min_video_len: continue if data_args.max_video_len >= 0 and anno.get('duration', 0) > data_args.max_video_len: continue annos.append(anno) self.annos = annos self.raw_length = len(raw_annos) self.processor = processor self.model_args = model_args self.data_args = data_args self.training_args = training_args def __len__(self): return len(self.annos) def __getitem__(self, idx): anno = copy.deepcopy(self.annos[idx]) video_path, duration, query, span = anno['video_path'], anno['duration'], anno['query'], anno['span'] messages = [{ 'role': 'user', 'content': [{ 'type': 'video', 'video': video_path, 'min_pixels': 36 * 28 * 28, 'max_pixels': 64 * 28 * 28, 'max_frames': 150, 'fps': 1.0 }, { 'type': 'text', 'text': GROUNDER_PROMPT.format(query) }] }, { 'role': 'assistant', 'content': f'The relevant moment happens in {REG_TOKEN}.' }] meta = dict(messages=messages, span=span, duration=duration) return meta