Spaces:
Sleeping
Sleeping
import spaces | |
import gradio as gr | |
# Use a pipeline as a high-level helper | |
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
from datasets import load_dataset | |
def transcribe_audio(audio): | |
if audio is None: | |
return "Please upload an audio file." | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = ["openai/whisper-large-v3", "alvanlii/whisper-small-cantonese"] | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=25, | |
batch_size=16, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
result = pipe(audio) | |
return result["text"] | |
demo = gr.Interface(fn=transcribe_audio, | |
inputs=[gr.Audio(sources="upload", type="filepath"), gr.Dropdown(choices=["openai/whisper-large-v3", "alvanlii/whisper-small-cantonese"])], | |
outputs="text") | |
demo.launch() | |