Spaces:
Sleeping
Sleeping
import spaces | |
import gradio as gr | |
# Use a pipeline as a high-level helper | |
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, AutoModelForCausalLM | |
def transcribe_audio(audio, model_id): | |
if audio is None: | |
return "Please upload an audio file." | |
if model_id is None: | |
return "Please select a model." | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=25, | |
batch_size=16, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
result = pipe(audio) | |
return result["text"] | |
def proofread(prompt, text): | |
if text is None: | |
return "Please provide the transcribed text for proofreading." | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
prompt = "用繁體中文整理這段文字,在最後加上整段文字的重點。" | |
model = AutoModelForCausalLM.from_pretrained("hfl/llama-3-chinese-8b-instruct-v3") | |
tokenizer = AutoTokenizer.from_pretrained("hfl/llama-3-chinese-8b-instruct-v3") | |
model.to(device) | |
# Perform proofreading using the model | |
input_ids = tokenizer.encode(text, return_tensors="pt").to(device) | |
output = model.generate(input_ids, max_length=len(input_ids[0])+50, num_return_sequences=1, temperature=0.7) | |
proofread_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return proofread_text | |
with gr.Blocks() as demo: | |
gr.Markdown("# Audio Transcription and Proofreading") | |
gr.Markdown("Upload an audio file, select a model for transcription, and then proofread the transcribed text.") | |
with gr.Row(): | |
audio = gr.Audio(sources="upload", type="filepath") | |
model_dropdown = gr.Dropdown(choices=["openai/whisper-large-v3", "alvanlii/whisper-small-cantonese"], value="openai/whisper-large-v3") | |
transcribe_button = gr.Button("Transcribe") | |
transcribed_text = gr.Textbox(label="Transcribed Text") | |
proofread_button = gr.Button("Proofread") | |
proofread_output = gr.Textbox(label="Proofread Text") | |
transcribe_button.click(transcribe_audio, inputs=[audio, model_dropdown], outputs=transcribed_text) | |
proofread_button.click(proofread, inputs=transcribed_text, outputs=proofread_output) | |
demo.launch() | |