yellowcandle's picture
added proofread function
e648c2d unverified
raw
history blame
2.28 kB
import spaces
import gradio as gr
# Use a pipeline as a high-level helper
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
# from datasets import load_dataset
@spaces.GPU(duration=120)
def transcribe_audio(audio, model_id):
if audio is None:
return "Please upload an audio file."
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=25,
batch_size=16,
torch_dtype=torch_dtype,
device=device,
)
result = pipe(audio)
return result["text"]
@spaces.GPU(duration=60)
def proofread(text):
if text is None:
return "Please provide the transcribed text for proofreading."
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForCausalLM.from_pretrained("hfl/llama-3-chinese-8b-instruct-v3")
model.to(device)
# Perform proofreading using the model
input_ids = model.tokenizer.encode(text, return_tensors="pt").to(device)
output = model.generate(input_ids, max_length=len(input_ids[0])+50, num_return_sequences=1, temperature=0.7)
proofread_text = model.tokenizer.decode(output[0], skip_special_tokens=True)
return proofread_text
demo = gr.Interface(
[transcribe_audio, proofread],
[
gr.Audio(sources="upload", type="filepath"),
gr.Dropdown(choices=["openai/whisper-large-v3", "alvanlii/whisper-small-cantonese"]),
"text"
],
"text",
allow_flagging="never",
title="Audio Transcription and Proofreading",
description="Upload an audio file, select a model for transcription, and then proofread the transcribed text.",
)
demo.launch()