Spaces:
Sleeping
Sleeping
import spaces | |
import gradio as gr | |
import os | |
import orjson | |
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, AutoModelForCausalLM, AutoTokenizer | |
transcribe_model = None | |
proofread_model = None | |
def transcribe_audio(audio): | |
global transcribe_model | |
if audio is None: | |
return "Please upload an audio file." | |
if transcribe_model is None: | |
return "Please load the transcription model first." | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
processor = AutoProcessor.from_pretrained(transcribe_model) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=transcribe_model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=25, | |
batch_size=16, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
result = pipe(audio) | |
return result["text"] | |
def proofread(text): | |
global proofread_model | |
if text is None: | |
return "Please provide the transcribed text for proofreading." | |
if proofread_model is None: | |
return "Please load the proofreading model first." | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
messages = [ | |
{"role": "system", "content": "用繁體中文語體文整理這段文字,在最後加上整段文字的重點。"}, | |
{"role": "user", "content": text}, | |
] | |
inputs = proofread_model.tokenizer(messages, return_tensors="tf", padding=True) | |
outputs = proofread_model.generate(**inputs) | |
proofread_text = proofread_model.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return proofread_text | |
def load_models(transcribe_model_id, proofread_model_id): | |
global transcribe_model, proofread_model | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
transcribe_model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
transcribe_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
transcribe_model.to(device) | |
proofread_model = AutoModelForCausalLM.from_pretrained(proofread_model_id) | |
proofread_model.to(device) | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# Audio Transcription and Proofreading | |
1. Select models for transcription and proofreading and load them | |
2. Upload an audio file (Wait for the file to be fully loaded first) | |
3. Transcribe the audio | |
4. Proofread the transcribed text | |
""") | |
with gr.Row(): | |
transcribe_model_dropdown = gr.Dropdown(choices=["openai/whisper-large-v2", "alvanlii/whisper-small-cantonese"], value="alvanlii/whisper-small-cantonese", label="Select Transcription Model") | |
proofread_model_dropdown = gr.Dropdown(choices=["hfl/llama-3-chinese-8b-instruct-v3"], value="hfl/llama-3-chinese-8b-instruct-v3", label="Select Proofreading Model") | |
load_button = gr.Button("Load Models") | |
audio = gr.Audio(sources="upload", type="filepath") | |
transcribe_button = gr.Button("Transcribe") | |
transcribed_text = gr.Textbox(label="Transcribed Text") | |
proofread_button = gr.Button("Proofread") | |
proofread_output = gr.Textbox(label="Proofread Text") | |
load_button.click(load_models, inputs=[transcribe_model_dropdown, proofread_model_dropdown]) | |
transcribe_button.click(transcribe_audio, inputs=audio, outputs=transcribed_text) | |
proofread_button.click(proofread, inputs=transcribed_text, outputs=proofread_output) | |
transcribed_text.change(proofread, inputs=transcribed_text, outputs=proofread_output) | |
demo.launch() |